論文の概要: ArtFormer: Controllable Generation of Diverse 3D Articulated Objects
- arxiv url: http://arxiv.org/abs/2412.07237v1
- Date: Tue, 10 Dec 2024 07:00:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:15.159828
- Title: ArtFormer: Controllable Generation of Diverse 3D Articulated Objects
- Title(参考訳): ArtFormer: 逆3次元Articulated Objectの制御可能な生成
- Authors: Jiayi Su, Youhe Feng, Zheng Li, Jinhua Song, Yangfan He, Botao Ren, Botian Xu,
- Abstract要約: 本稿では,3次元調音物体のモデリングと条件生成のための新しい枠組みを提案する。
トークンのツリーとして記述されたオブジェクトをパラメータ化し、トランスフォーマーを用いてオブジェクトの高レベルな幾何コードとその運動的関係を生成する。
提案手法により,高品質な形状と部品数の異なる多種多様なオブジェクトの生成が可能となる。
- 参考スコア(独自算出の注目度): 5.320860732053524
- License:
- Abstract: This paper presents a novel framework for modeling and conditional generation of 3D articulated objects. Troubled by flexibility-quality tradeoffs, existing methods are often limited to using predefined structures or retrieving shapes from static datasets. To address these challenges, we parameterize an articulated object as a tree of tokens and employ a transformer to generate both the object's high-level geometry code and its kinematic relations. Subsequently, each sub-part's geometry is further decoded using a signed-distance-function (SDF) shape prior, facilitating the synthesis of high-quality 3D shapes. Our approach enables the generation of diverse objects with high-quality geometry and varying number of parts. Comprehensive experiments on conditional generation from text descriptions demonstrate the effectiveness and flexibility of our method.
- Abstract(参考訳): 本稿では,3次元調音物体のモデリングと条件生成のための新しい枠組みを提案する。
柔軟性の高いトレードオフに悩まされるが、既存のメソッドは、事前に定義された構造を使用するか、静的データセットから形状を取得することに限定されることが多い。
これらの課題に対処するため,トークンのツリーとして記述されたオブジェクトをパラメータ化し,変換器を用いてオブジェクトの高レベルな幾何符号とキネマティックな関係を生成する。
その後、各サブパートの幾何学は符号付き距離関数(SDF)形状によりさらに復号化され、高品質な3次元形状の合成が容易になる。
提案手法により,高品質な形状と部品数の異なる多種多様なオブジェクトの生成が可能となる。
テキスト記述からの条件生成に関する総合的な実験は,本手法の有効性と柔軟性を示す。
関連論文リスト
- NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D形状生成は、特定の条件や制約に固執する革新的な3Dコンテンツを作成することを目的としている。
既存の方法は、しばしば3Dの形状を局所化されたコンポーネントの列に分解し、各要素を分離して扱う。
本研究では2次元平面表現を利用した空間認識型3次元形状生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T04:09:34Z) - CG3D: Compositional Generation for Text-to-3D via Gaussian Splatting [57.14748263512924]
CG3Dは、スケーラブルな3Dアセットを合成的に生成する手法である。
ガンマ放射場は、オブジェクトの合成を可能にするためにパラメータ化され、意味的および物理的に一貫したシーンを可能にする能力を持っている。
論文 参考訳(メタデータ) (2023-11-29T18:55:38Z) - DeFormer: Integrating Transformers with Deformable Models for 3D Shape
Abstraction from a Single Image [31.154786931081087]
本稿では,パラメータ化デフォルマブルモデルと統合された新しいバイチャネルトランスフォーマアーキテクチャを提案し,プリミティブのグローバルおよび局所的な変形を同時に推定する。
DeFormerは、最先端技術よりもより良い再構築精度を実現し、一貫したセマンティック対応で可視化し、解釈性を向上させる。
論文 参考訳(メタデータ) (2023-09-22T02:46:43Z) - RISA-Net: Rotation-Invariant Structure-Aware Network for Fine-Grained 3D
Shape Retrieval [46.02391761751015]
きめ細かい3D形状の検索は、同じクラスに属するモデルを持つレポジトリのクエリ形状に似た3D形状の検索を目的としている。
回転不変な3次元形状記述子を学習する新しいディープアーキテクチャ RISA-Net を提案する。
本手法は,3次元形状の最終コンパクト潜時特徴を生成する際に,各部分の幾何学的・構造的情報の重要性を学習することができる。
論文 参考訳(メタデータ) (2020-10-02T13:06:12Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
DSG-Netは3次元形状の非交叉構造と幾何学的メッシュ表現を学習するディープニューラルネットワークである。
これは、幾何(構造)を不変に保ちながら構造(幾何学)のような不整合制御を持つ新しい形状生成アプリケーションの範囲をサポートする。
本手法は,制御可能な生成アプリケーションだけでなく,高品質な合成形状を生成できる。
論文 参考訳(メタデータ) (2020-08-12T17:06:51Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
プリミティブの集合として3次元オブジェクトの幾何を共同で復元できる新しい定式化を提案する。
我々のモデルは、プリミティブのバイナリツリーの形で、様々なオブジェクトの高レベルな構造的分解を復元する。
ShapeNet と D-FAUST のデータセットを用いた実験により,部品の組織化を考慮すれば3次元形状の推論が容易になることが示された。
論文 参考訳(メタデータ) (2020-04-02T17:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。