CoMA: Compositional Human Motion Generation with Multi-modal Agents
- URL: http://arxiv.org/abs/2412.07320v2
- Date: Tue, 07 Jan 2025 23:10:25 GMT
- Title: CoMA: Compositional Human Motion Generation with Multi-modal Agents
- Authors: Shanlin Sun, Gabriel De Araujo, Jiaqi Xu, Shenghan Zhou, Hanwen Zhang, Ziheng Huang, Chenyu You, Xiaohui Xie,
- Abstract summary: CoMA is an agent-based solution for complex human motion generation, editing, and comprehension.
Our framework enables generation of both short and long motion sequences with detailed instructions, text-guided motion editing, and self-correction.
- Score: 22.151443524452876
- License:
- Abstract: 3D human motion generation has seen substantial advancement in recent years. While state-of-the-art approaches have improved performance significantly, they still struggle with complex and detailed motions unseen in training data, largely due to the scarcity of motion datasets and the prohibitive cost of generating new training examples. To address these challenges, we introduce CoMA, an agent-based solution for complex human motion generation, editing, and comprehension. CoMA leverages multiple collaborative agents powered by large language and vision models, alongside a mask transformer-based motion generator featuring body part-specific encoders and codebooks for fine-grained control. Our framework enables generation of both short and long motion sequences with detailed instructions, text-guided motion editing, and self-correction for improved quality. Evaluations on the HumanML3D dataset demonstrate competitive performance against state-of-the-art methods. Additionally, we create a set of context-rich, compositional, and long text prompts, where user studies show our method significantly outperforms existing approaches.
Related papers
- Motion-Agent: A Conversational Framework for Human Motion Generation with LLMs [67.59291068131438]
Motion-Agent is a conversational framework designed for general human motion generation, editing, and understanding.
Motion-Agent employs an open-source pre-trained language model to develop a generative agent, MotionLLM, that bridges the gap between motion and text.
arXiv Detail & Related papers (2024-05-27T09:57:51Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Move as You Say, Interact as You Can: Language-guided Human Motion Generation with Scene Affordance [48.986552871497]
We introduce a novel two-stage framework that employs scene affordance as an intermediate representation.
By leveraging scene affordance maps, our method overcomes the difficulty in generating human motion under multimodal condition signals.
Our approach consistently outperforms all baselines on established benchmarks, including HumanML3D and HUMANISE.
arXiv Detail & Related papers (2024-03-26T18:41:07Z) - CoMo: Controllable Motion Generation through Language Guided Pose Code Editing [57.882299081820626]
We introduce CoMo, a Controllable Motion generation model, adept at accurately generating and editing motions.
CoMo decomposes motions into discrete and semantically meaningful pose codes.
It autoregressively generates sequences of pose codes, which are then decoded into 3D motions.
arXiv Detail & Related papers (2024-03-20T18:11:10Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - TEMOS: Generating diverse human motions from textual descriptions [53.85978336198444]
We address the problem of generating diverse 3D human motions from textual descriptions.
We propose TEMOS, a text-conditioned generative model leveraging variational autoencoder (VAE) training with human motion data.
We show that TEMOS framework can produce both skeleton-based animations as in prior work, as well more expressive SMPL body motions.
arXiv Detail & Related papers (2022-04-25T14:53:06Z) - ActFormer: A GAN Transformer Framework towards General
Action-Conditioned 3D Human Motion Generation [16.1094669439815]
We present a GAN Transformer framework for general action-conditioned 3D human motion generation.
Our approach consists of a powerful Action-conditioned transFormer (ActFormer) under a GAN training scheme.
ActFormer can be naturally extended to multi-person motions by alternately modeling temporal correlations and human interactions with Transformer encoders.
arXiv Detail & Related papers (2022-03-15T07:50:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.