Addressing Key Challenges of Adversarial Attacks and Defenses in the Tabular Domain: A Methodological Framework for Coherence and Consistency
- URL: http://arxiv.org/abs/2412.07326v1
- Date: Tue, 10 Dec 2024 09:17:09 GMT
- Title: Addressing Key Challenges of Adversarial Attacks and Defenses in the Tabular Domain: A Methodological Framework for Coherence and Consistency
- Authors: Yael Itzhakev, Amit Giloni, Yuval Elovici, Asaf Shabtai,
- Abstract summary: In this paper, we propose new evaluation criteria tailored for adversarial attacks in the tabular domain.
We also introduce a novel technique for perturbing dependent features while maintaining coherence and feature consistency within the sample.
The findings provide valuable insights on the strengths, limitations, and trade-offs of various adversarial attacks in the tabular domain.
- Score: 26.645723217188323
- License:
- Abstract: Machine learning models trained on tabular data are vulnerable to adversarial attacks, even in realistic scenarios where attackers have access only to the model's outputs. Researchers evaluate such attacks by considering metrics like success rate, perturbation magnitude, and query count. However, unlike other data domains, the tabular domain contains complex interdependencies among features, presenting a unique aspect that should be evaluated: the need for the attack to generate coherent samples and ensure feature consistency for indistinguishability. Currently, there is no established methodology for evaluating adversarial samples based on these criteria. In this paper, we address this gap by proposing new evaluation criteria tailored for tabular attacks' quality; we defined anomaly-based framework to assess the distinguishability of adversarial samples and utilize the SHAP explainability technique to identify inconsistencies in the model's decision-making process caused by adversarial samples. These criteria could form the basis for potential detection methods and be integrated into established evaluation metrics for assessing attack's quality Additionally, we introduce a novel technique for perturbing dependent features while maintaining coherence and feature consistency within the sample. We compare different attacks' strategies, examining black-box query-based attacks and transferability-based gradient attacks across four target models. Our experiments, conducted on benchmark tabular datasets, reveal significant differences between the examined attacks' strategies in terms of the attacker's risk and effort and the attacks' quality. The findings provide valuable insights on the strengths, limitations, and trade-offs of various adversarial attacks in the tabular domain, laying a foundation for future research on attacks and defense development.
Related papers
- Investigating Imperceptibility of Adversarial Attacks on Tabular Data: An Empirical Analysis [1.6693963355435217]
Adversarial attacks are a potential threat to machine learning models.
These attacks cause incorrect predictions through imperceptible perturbations to the input data.
This study proposes a set of key properties and corresponding metrics to assess the imperceptibility of adversarial attacks.
arXiv Detail & Related papers (2024-07-16T07:55:25Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Adversarial Robustness on Image Classification with $k$-means [3.5385056709199536]
We evaluate the vulnerability of $k$-means clustering algorithms to adversarial attacks, emphasising the associated security risks.
We introduce and evaluate an adversarial training method that improves testing performance in adversarial scenarios.
arXiv Detail & Related papers (2023-12-15T04:51:43Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
Adrial attacks insert small, imperceptible perturbations to input samples that cause large, undesired changes to the output of deep learning models.
This work introduces the notion of sample attackability, where we aim to identify samples that are most susceptible to adversarial attacks.
We propose a deep-learning-based detector to identify the adversarially attackable and robust samples in an unseen dataset for an unseen target model.
arXiv Detail & Related papers (2023-01-30T13:58:14Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
We investigate the problem of designing optimal stealthy poisoning attacks on the control channel of Markov decision processes (MDPs)
This research is motivated by the recent interest of the research community for adversarial and poisoning attacks applied to MDPs, and reinforcement learning (RL) methods.
arXiv Detail & Related papers (2021-09-15T09:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.