論文の概要: Benchmarking Vision-Based Object Tracking for USVs in Complex Maritime Environments
- arxiv url: http://arxiv.org/abs/2412.07392v1
- Date: Tue, 10 Dec 2024 10:35:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:00.167362
- Title: Benchmarking Vision-Based Object Tracking for USVs in Complex Maritime Environments
- Title(参考訳): 複雑な海洋環境下でのUSVの視線に基づく物体追跡のベンチマーク
- Authors: Muhayy Ud Din, Ahsan B. Bakht, Waseem Akram, Yihao Dong, Lakmal Seneviratne, Irfan Hussain,
- Abstract要約: 視覚に基づく目標追跡は無人表面車両にとって不可欠である。
海上環境におけるリアルタイムトラッキングは、動的なカメラの動き、視界の低さ、スケールの変動によって困難である。
本研究では,USVのための視覚誘導型物体追跡フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.8796261172196743
- License:
- Abstract: Vision-based target tracking is crucial for unmanned surface vehicles (USVs) to perform tasks such as inspection, monitoring, and surveillance. However, real-time tracking in complex maritime environments is challenging due to dynamic camera movement, low visibility, and scale variation. Typically, object detection methods combined with filtering techniques are commonly used for tracking, but they often lack robustness, particularly in the presence of camera motion and missed detections. Although advanced tracking methods have been proposed recently, their application in maritime scenarios is limited. To address this gap, this study proposes a vision-guided object-tracking framework for USVs, integrating state-of-the-art tracking algorithms with low-level control systems to enable precise tracking in dynamic maritime environments. We benchmarked the performance of seven distinct trackers, developed using advanced deep learning techniques such as Siamese Networks and Transformers, by evaluating them on both simulated and real-world maritime datasets. In addition, we evaluated the robustness of various control algorithms in conjunction with these tracking systems. The proposed framework was validated through simulations and real-world sea experiments, demonstrating its effectiveness in handling dynamic maritime conditions. The results show that SeqTrack, a Transformer-based tracker, performed best in adverse conditions, such as dust storms. Among the control algorithms evaluated, the linear quadratic regulator controller (LQR) demonstrated the most robust and smooth control, allowing for stable tracking of the USV.
- Abstract(参考訳): 視覚に基づく目標追跡は、無人表面車両(USV)が検査、監視、監視などのタスクを実行するために不可欠である。
しかし、複雑な海洋環境におけるリアルタイムトラッキングは、動的なカメラの動き、視界の低さ、スケールの変動によって困難である。
一般的には、オブジェクト検出とフィルタリング技術を組み合わせて追跡を行うが、特にカメラの動きや見逃し検出の存在下では、堅牢性に欠けることが多い。
近年、高度な追跡手法が提案されているが、海洋シナリオでの応用は限られている。
そこで本研究では,低レベル制御システムに最先端のトラッキングアルゴリズムを統合することで,動的海洋環境における正確なトラッキングを可能にする,USVのための視覚誘導型オブジェクト追跡フレームワークを提案する。
我々は,シムズネットワークやトランスフォーマーといった先進的な深層学習技術を用いて,シミュレーションおよび実世界の海洋データセットを用いて,7つのトラッカーの性能をベンチマークした。
さらに,これらのトラッキングシステムと組み合わせて,各種制御アルゴリズムの堅牢性を評価した。
提案手法はシミュレーションと実世界の海洋実験によって検証され, 動的海洋条件を扱う上での有効性を実証した。
その結果, トランスフォーマーをベースとしたトラッカーであるSeqTrackは, ダストストームなどの悪条件下で最高の性能を示した。
評価された制御アルゴリズムのうち、線形2次制御器(LQR)は最も頑健で滑らかな制御を示し、USVの安定した追跡を可能にした。
関連論文リスト
- Enhancing Feature Tracking Reliability for Visual Navigation using Real-Time Safety Filter [23.90865158642276]
視覚センサーはロボットのポーズのローカライズに広く使われている。
信頼できる機能追跡と正確なポーズ推定のためには、十分な数の機能の可視性を維持することが不可欠である。
本稿では,2次プログラミングに基づくリアルタイム安全フィルタを提案する。
論文 参考訳(メタデータ) (2025-02-03T06:26:04Z) - Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
本稿では,任意の点を追跡するイベントベースのフレームワークを提案する。
出来事の空間的空間性や動きの感度によって引き起こされる課題に対処する。
競合モデルパラメータによる処理を150%高速化する。
論文 参考訳(メタデータ) (2024-12-02T09:13:29Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
本稿では,スムーズなカメラ軌跡を推定し,野生のカジュアルビデオのための高密度点雲を得るための,簡潔でエレガントでロバストなパイプラインを提案する。
提案手法は,複雑な動的課題シーンにおいても,カメラポーズ推定による最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T13:01:16Z) - Camouflaged Object Tracking: A Benchmark [16.07670491479613]
カモフラージュされたオブジェクト追跡手法を評価するためのベンチマークであるCOTD(Camouflaged Object Tracking dataset)を導入する。
COTDは200のシーケンスと約80,000のフレームで構成され、それぞれに詳細なバウンディングボックスが付加されている。
既存の20個の追跡アルゴリズムを評価した結果,カモフラージュした物体を用いた場合,その性能に重大な欠陥があることが判明した。
本稿では,新しいトラッキングフレームワーク HiPTrack-MLS を提案する。
論文 参考訳(メタデータ) (2024-08-25T15:56:33Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
本稿では,極端海洋環境下での目標物追跡のための自律的視覚に基づくナビゲーション・フレームワークを提案する。
提案手法は砂嵐や霧による可視性低下下でのシミュレーションで徹底的に検証されている。
結果は、ベンチマークしたMBZIRCシミュレーションデータセット全体にわたる最先端のデハージング手法と比較される。
論文 参考訳(メタデータ) (2023-08-08T14:25:13Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
漁業活動における漁獲監視の目的は、映像から魚の標的をリアルタイムで検出し、追跡し、分類することである。
本稿では,既存の観測中心追跡アルゴリズムに基づく新しいMOT手法を提案する。
本手法は,海洋魚種群およびMOT17種群において,一様外観の追跡目標の性能向上と最先端技術の向上を図っている。
論文 参考訳(メタデータ) (2023-04-10T18:55:10Z) - OmniTracker: Unifying Object Tracking by Tracking-with-Detection [119.51012668709502]
OmniTrackerは、完全に共有されたネットワークアーキテクチャ、モデルウェイト、推論パイプラインですべてのトラッキングタスクを解決するために提供されている。
LaSOT、TrackingNet、DAVIS16-17、MOT17、MOTS20、YTVIS19を含む7つの追跡データセットの実験は、OmniTrackerがタスク固有の追跡モデルと統合された追跡モデルの両方よりも、オンパーまたはそれ以上の結果を達成することを示した。
論文 参考訳(メタデータ) (2023-03-21T17:59:57Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisTは、視認性の悪いさまざまなシナリオにおける視覚的トラッキングのためのベンチマークである。
AVisTは、80kの注釈付きフレームを持つ120の挑戦的なシーケンスで構成されており、18の多様なシナリオにまたがっている。
我々は、属性間でのトラッキング性能を詳細に分析し、AVisTで17の人気のトラッカーと最近のトラッカーをベンチマークした。
論文 参考訳(メタデータ) (2022-08-14T17:49:37Z) - A Spatio-temporal Track Association Algorithm Based on Marine Vessel
Automatic Identification System Data [5.453186558530502]
動的脅威環境でリアルタイムに移動する物体を追跡することは、国家安全保障と監視システムにおいて重要である。
動きの異常パターンを見つけるには、正確なデータアソシエーションアルゴリズムが必要である。
自動識別システムにより船舶の位置と姿勢の観察が収集されるとき, 海上船舶の追跡のための時間的アプローチを開発する。
論文 参考訳(メタデータ) (2020-10-29T20:11:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。