RAG-based Question Answering over Heterogeneous Data and Text
- URL: http://arxiv.org/abs/2412.07420v1
- Date: Tue, 10 Dec 2024 11:18:29 GMT
- Title: RAG-based Question Answering over Heterogeneous Data and Text
- Authors: Philipp Christmann, Gerhard Weikum,
- Abstract summary: This article presents the QUASAR system for question answering over unstructured text, structured tables, and knowledge graphs.
The system adopts a RAG-based architecture, with a pipeline of evidence retrieval followed by answer generation, with the latter powered by a moderate-sized language model.
Experiments with three different benchmarks demonstrate the high answering quality of our approach, being on par with or better than large GPT models.
- Score: 23.075485587443485
- License:
- Abstract: This article presents the QUASAR system for question answering over unstructured text, structured tables, and knowledge graphs, with unified treatment of all sources. The system adopts a RAG-based architecture, with a pipeline of evidence retrieval followed by answer generation, with the latter powered by a moderate-sized language model. Additionally and uniquely, QUASAR has components for question understanding, to derive crisper input for evidence retrieval, and for re-ranking and filtering the retrieved evidence before feeding the most informative pieces into the answer generation. Experiments with three different benchmarks demonstrate the high answering quality of our approach, being on par with or better than large GPT models, while keeping the computational cost and energy consumption orders of magnitude lower.
Related papers
- QuOTE: Question-Oriented Text Embeddings [8.377715521597292]
QuOTE (Question-Oriented Text Embeddings) is a novel enhancement to retrieval-augmented generation (RAG) systems.
Unlike traditional RAG pipelines, QuOTE augments chunks with hypothetical questions that the chunk can potentially answer.
We demonstrate that QuOTE significantly enhances retrieval accuracy, including in multi-hop question-answering tasks.
arXiv Detail & Related papers (2025-02-16T03:37:13Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Evidence Contextualization and Counterfactual Attribution for Conversational QA over Heterogeneous Data with RAG Systems [4.143039012104666]
Retrieval Augmented Generation (RAG) works as a backbone for interacting with an enterprise's own data via Conversational Question Answering (ConvQA)
In this work, we demonstrate RAGONITE, a RAG system that remedies the above concerns by: (i) contextualizing evidence with source metadata and surrounding text; and (ii) computing counterfactual attribution.
arXiv Detail & Related papers (2024-12-13T21:28:17Z) - Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
We introduce a novel framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question.
We use this framework to evaluate three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat.
We find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions.
arXiv Detail & Related papers (2024-10-20T22:59:34Z) - Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems [14.62114319247837]
Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses.
A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query.
These four RAG modules synergistically improve the response quality and efficiency of the RAG system.
arXiv Detail & Related papers (2024-07-15T12:35:00Z) - Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
We propose a conversation-level RAG approach, which incorporates fine-grained retrieval augmentation and self-check for conversational question answering.
In particular, our approach consists of three components, namely conversational question refiner, fine-grained retriever and self-check based response generator.
arXiv Detail & Related papers (2024-03-27T04:20:18Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - DecAF: Joint Decoding of Answers and Logical Forms for Question
Answering over Knowledge Bases [81.19499764899359]
We propose a novel framework DecAF that jointly generates both logical forms and direct answers.
DecAF achieves new state-of-the-art accuracy on WebQSP, FreebaseQA, and GrailQA benchmarks.
arXiv Detail & Related papers (2022-09-30T19:51:52Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
We propose an architecture called Iterative Retrieval-Generation Reasoner (IRGR)
Our model is able to explain a given hypothesis by systematically generating a step-by-step explanation from textual premises.
We outperform existing benchmarks on premise retrieval and entailment tree generation, with around 300% gain in overall correctness.
arXiv Detail & Related papers (2022-05-18T21:52:11Z) - EQG-RACE: Examination-Type Question Generation [21.17100754955864]
We propose an innovative Examination-type Question Generation approach (EQG-RACE) to generate exam-like questions based on a dataset extracted from RACE.
Two main strategies are employed in EQG-RACE for dealing with discrete answer information and reasoning among long contexts.
Experimental results show a state-of-the-art performance of EQG-RACE, which is apparently superior to the baselines.
arXiv Detail & Related papers (2020-12-11T03:52:17Z) - Open Question Answering over Tables and Text [55.8412170633547]
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question.
Most open QA systems have considered only retrieving information from unstructured text.
We present a new large-scale dataset Open Table-and-Text Question Answering (OTT-QA) to evaluate performance on this task.
arXiv Detail & Related papers (2020-10-20T16:48:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.