論文の概要: Score-matching-based Structure Learning for Temporal Data on Networks
- arxiv url: http://arxiv.org/abs/2412.07469v1
- Date: Tue, 10 Dec 2024 12:36:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:39:09.178403
- Title: Score-matching-based Structure Learning for Temporal Data on Networks
- Title(参考訳): スコアマッチングに基づくネットワーク上の時間データの構造学習
- Authors: Hao Chen, Kai Yi, Lin Liu, Yu Guang Wang,
- Abstract要約: 因果発見は経験的データと背景知識から因果関係を確立するための重要な第一歩である。
現在のスコアマッチングベースのアルゴリズムは、主に独立および同一に分散された(d.d.)データを分析するために設計されている。
我々はDAGの葉ノードのための新しい親フィンディングサブルーチンを開発し、プロセスの最も時間を要する部分である刈り込みステップを著しく加速した。
- 参考スコア(独自算出の注目度): 17.166362605356074
- License:
- Abstract: Causal discovery is a crucial initial step in establishing causality from empirical data and background knowledge. Numerous algorithms have been developed for this purpose. Among them, the score-matching method has demonstrated superior performance across various evaluation metrics, particularly for the commonly encountered Additive Nonlinear Causal Models. However, current score-matching-based algorithms are primarily designed to analyze independent and identically distributed (i.i.d.) data. More importantly, they suffer from high computational complexity due to the pruning step required for handling dense Directed Acyclic Graphs (DAGs). To enhance the scalability of score matching, we have developed a new parent-finding subroutine for leaf nodes in DAGs, significantly accelerating the most time-consuming part of the process: the pruning step. This improvement results in an efficiency-lifted score matching algorithm, termed Parent Identification-based Causal structure learning for both i.i.d. and temporal data on networKs, or PICK. The new score-matching algorithm extends the scope of existing algorithms and can handle static and temporal data on networks with weak network interference. Our proposed algorithm can efficiently cope with increasingly complex datasets that exhibit spatial and temporal dependencies, commonly encountered in academia and industry. The proposed algorithm can accelerate score-matching-based methods while maintaining high accuracy in real-world applications.
- Abstract(参考訳): 因果発見は経験的データと背景知識から因果関係を確立するための重要な第一歩である。
この目的のために多くのアルゴリズムが開発されている。
その中でも, スコアマッチング法は, 様々な評価指標, 特によく見られる付加的非線形因果モデルにおいて, 優れた性能を示した。
しかし、現在のスコアマッチングベースのアルゴリズムは、主に独立および同一に分散されたデータ(すなわち、d)を分析するために設計されている。
より重要なのは、密度の高い非巡回グラフ(DAG)を扱うのに必要なプルーニングステップのため、計算の複雑さに悩まされていることである。
スコアマッチングのスケーラビリティを向上させるため,DAGにおける葉ノードのための新しい親フィンディングサブルーチンを開発し,プロセスの最も時間を要する部分であるプルーニングステップを著しく高速化した。
この改良により、親同定に基づく因果構造学習(Parent Identification-based Causal Structure learning)と呼ばれる効率向上したスコアマッチングアルゴリズムが、networKs(PICK)上の時間データと時間データの両方を学習する。
新しいスコアマッチングアルゴリズムは、既存のアルゴリズムの範囲を拡張し、ネットワーク干渉の弱いネットワーク上の静的および時間的データを処理できる。
提案アルゴリズムは,学術や産業でよく見られる空間的および時間的依存関係を示す,ますます複雑なデータセットに効率的に対処することができる。
提案アルゴリズムは,実世界のアプリケーションにおいて高い精度を維持しつつ,スコアマッチングに基づく手法を高速化することができる。
関連論文リスト
- A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders [0.0]
因果ベイズネットワーク(Causal Bayesian Network, CBN)は、変数間の因果関係を符号化する一般的なグラフィカル確率モデルである。
本稿では,DAGの空間を探索し,潜在する共同設立者の存在を識別できる,初めての完全スコアに基づく構造学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-20T20:25:56Z) - CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion [8.036012885171166]
我々は、動的データ取り込みを伴う連続近似Nearest Neighbor Searchに適したベンチマークであるCANDYを紹介する。
CANDYは幅広いAKNNアルゴリズムを包括的に評価し、機械学習駆動推論のような高度な最適化を統合する。
多様なデータセットに対する評価では、より単純なAKNNベースラインが、リコールやレイテンシの点で、より複雑な選択肢を上回ることが示されている。
論文 参考訳(メタデータ) (2024-06-28T04:46:11Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
本稿では,正と負の相関関係を持つタスクに対する分散・フェデレーション学習アルゴリズムを提案する。
本アルゴリズムでは,タスク間の相関関係を自動的に計算し,コミュニケーショングラフを動的に調整して相互に有益なタスクを接続し,互いに悪影響を及ぼす可能性のあるタスクを分離する。
合成ガウスデータセットと大規模セレブ属性(CelebA)データセットについて実験を行った。
論文 参考訳(メタデータ) (2022-12-21T18:58:24Z) - Bioinspired Cortex-based Fast Codebook Generation [0.09449650062296822]
脳内の知覚皮質ネットワークにインスパイアされた特徴抽出法を提案する。
バイオインスパイアされた大脳皮質と呼ばれるこのアルゴリズムは、より優れた計算効率を持つストリーミング信号の特徴に収束する。
ここでは、クラスタリングおよびベクトル量子化における大脳皮質モデルの優れた性能を示す。
論文 参考訳(メタデータ) (2022-01-28T18:37:43Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Accelerating Recursive Partition-Based Causal Structure Learning [4.357523892518871]
帰納的因果探索アルゴリズムは、より小さなサブプロブレムで条件独立性テスト(CI)を用いて良い結果をもたらす。
本稿では,少数のCIテストと望ましくない関係を特定できる汎用因果構造改善戦略を提案する。
次に,合成および実データ集合における解の質と完了時間の観点から,最先端アルゴリズムに対する性能を実証的に評価する。
論文 参考訳(メタデータ) (2021-02-23T08:28:55Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
Incrmental Gaussian Mixture Network (IGMN)と呼ばれる単一パスから学習可能なオンラインおよびインクリメンタルなアルゴリズムが、結合状態とQ値空間のためのサンプル効率関数近似器として採用された。
IGMN関数近似器の使用は、勾配降下法で訓練された従来のニューラルネットワークと比較して、強化学習に重要な利点をもたらすことが観察された。
論文 参考訳(メタデータ) (2020-11-02T03:18:15Z) - A Constraint-Based Algorithm for the Structural Learning of
Continuous-Time Bayesian Networks [70.88503833248159]
連続時間ベイズネットワークの構造を学習するための制約に基づく最初のアルゴリズムを提案する。
我々は,条件付き独立性を確立するために提案した,異なる統計的テストと基礎となる仮説について論じる。
論文 参考訳(メタデータ) (2020-07-07T07:34:09Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。