Dual Random Fields and their Application to Mineral Potential Mapping
- URL: http://arxiv.org/abs/2412.07488v1
- Date: Tue, 10 Dec 2024 13:16:37 GMT
- Title: Dual Random Fields and their Application to Mineral Potential Mapping
- Authors: Álvaro I. Riquelme,
- Abstract summary: This paper introduces the notion of a dual random field (dRF), where the response function itself is considered a regionalized variable.
Different established response models across the geographic domain can be considered as observations of a dRF realization.
We explain how dRFs inherit all the properties from classical random fields, allowing the use of standard Gaussian simulation procedures to simulate them.
- Score: 0.0
- License:
- Abstract: In various geosciences branches, including mineral exploration, geometallurgical characterization on established mining operations, and remote sensing, the regionalized input variables are spatially well-sampled across the domain of interest, limiting the scope of spatial uncertainty quantification procedures. In turn, response outcomes such as the mineral potential in a given region, mining throughput, metallurgical recovery, or in-situ estimations from remote satellite imagery, are usually modeled from a much-restricted subset of testing samples, collected at certain locations due to accessibility restrictions and the high acquisition costs. Our limited understanding of these functions, in terms of the multi-dimensional complexity of causalities and unnoticed dependencies on inaccessible inputs, may lead to observing changes in such functions based on their geographical location. Pooling together different response functions across the domain is critical to correctly predict outcome responses, the uncertainty associated with these inferred values, and the significance of inputs in such predictions at unexplored areas. This paper introduces the notion of a dual random field (dRF), where the response function itself is considered a regionalized variable. In this way, different established response models across the geographic domain can be considered as observations of a dRF realization, enabling the spatial inference and uncertainty assessment of both response models and their predictions. We explain how dRFs inherit all the properties from classical random fields, allowing the use of standard Gaussian simulation procedures to simulate them. These models are combined to obtain a mineral potential response, providing an example of how to rigorously integrate machine learning approaches with geostatistics.
Related papers
- A general reduced-order neural operator for spatio-temporal predictive learning on complex spatial domains [1.708086375224371]
This paper focuses on the unequal-domain mappings in predictive learning for complex processes (PL-STP)
Recent advances in deep learning have revealed the great potential of neural operators (NOs) to learn operators directly from observational data.
Existing NOs require input space and output space to be the same domain, which pose challenges in ensuring predictive accuracy and stability for unequal-domain mappings.
arXiv Detail & Related papers (2024-09-09T11:02:27Z) - Geometric Constraints in Probabilistic Manifolds: A Bridge from
Molecular Dynamics to Structured Diffusion Processes [0.0]
We propose a method that enables sampling from distributions that rigorously adhere to arbitrary sets of geometric constraints in Euclidean spaces.
This is achieved by integrating a constraint projection operator within the well-regarded architecture of Denoising Diffusion Probabilistic Models.
arXiv Detail & Related papers (2023-07-10T11:31:15Z) - RbX: Region-based explanations of prediction models [69.3939291118954]
Region-based explanations (RbX) is a model-agnostic method to generate local explanations of scalar outputs from a black-box prediction model.
RbX is guaranteed to satisfy a "sparsity axiom," which requires that features which do not enter into the prediction model are assigned zero importance.
arXiv Detail & Related papers (2022-10-17T03:38:06Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - A Convolutional Neural Network-based Approach to Field Reconstruction [0.0]
In many applications, the spatial distribution of a field needs to be carefully monitored to detect spikes, discontinuities or dangerous heterogeneities.
In this work, a physics-informed, data-driven algorithm that allows addressing these requirements is presented.
arXiv Detail & Related papers (2021-08-27T00:16:44Z) - Goal-oriented adaptive sampling under random field modelling of response
probability distributions [0.6445605125467573]
We consider cases where the spatial variation of response distributions does not only concern their mean and/or variance but also other features including for instance shape or uni-modality versus multi-modality.
Our contributions build upon a non-parametric Bayesian approach to modelling the thereby induced fields of probability distributions.
arXiv Detail & Related papers (2021-02-15T15:55:23Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Learning Structures in Earth Observation Data with Gaussian Processes [67.27044745471207]
This paper reviews the main theoretical GP developments in the field.
New algorithms that respect the signal and noise characteristics, that provide feature rankings automatically, and that allow applicability of associated uncertainty intervals are discussed.
arXiv Detail & Related papers (2020-12-22T10:46:37Z) - Causal Inference in Geoscience and Remote Sensing from Observational
Data [9.800027003240674]
We try to estimate the correct direction of causation using a finite set of empirical data.
We illustrate performance in a collection of 28 geoscience causal inference problems.
The criterion achieves state-of-the-art detection rates in all cases, it is generally robust to noise sources and distortions.
arXiv Detail & Related papers (2020-12-07T22:56:55Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.