Improving Neural Additive Models with Bayesian Principles
- URL: http://arxiv.org/abs/2305.16905v5
- Date: Sat, 26 Oct 2024 08:44:38 GMT
- Title: Improving Neural Additive Models with Bayesian Principles
- Authors: Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Rätsch, Vincent Fortuin,
- Abstract summary: Neural additive models (NAMs) enhance the transparency of deep neural networks by handling calibrated input features in separate additive sub-networks.
We develop Laplace-approximated NAMs (LA-NAMs) which show improved empirical performance on datasets and challenging real-world medical tasks.
- Score: 54.29602161803093
- License:
- Abstract: Neural additive models (NAMs) enhance the transparency of deep neural networks by handling input features in separate additive sub-networks. However, they lack inherent mechanisms that provide calibrated uncertainties and enable selection of relevant features and interactions. Approaching NAMs from a Bayesian perspective, we augment them in three primary ways, namely by a) providing credible intervals for the individual additive sub-networks; b) estimating the marginal likelihood to perform an implicit selection of features via an empirical Bayes procedure; and c) facilitating the ranking of feature pairs as candidates for second-order interaction in fine-tuned models. In particular, we develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical performance on tabular datasets and challenging real-world medical tasks.
Related papers
- DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
This study proposes novel dual-current neural networks (DCNN) to improve the accuracy of fine-grained image classification.
The main novel design features for constructing a weakly supervised learning backbone model DCNN include (a) extracting heterogeneous data, (b) keeping the feature map resolution unchanged, (c) expanding the receptive field, and (d) fusing global representations and local features.
arXiv Detail & Related papers (2024-05-07T07:51:28Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - SCAAT: Improving Neural Network Interpretability via Saliency
Constrained Adaptive Adversarial Training [10.716021768803433]
Saliency map is a common form of explanation illustrating the heatmap of feature attributions.
We propose a model-agnostic learning method called Saliency Constrained Adaptive Adversarial Training (SCAAT) to improve the quality of such DNN interpretability.
arXiv Detail & Related papers (2023-11-09T04:48:38Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
We introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters.
Our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively.
arXiv Detail & Related papers (2023-07-21T03:43:07Z) - Pseudo-Trilateral Adversarial Training for Domain Adaptive
Traversability Prediction [8.145900996884993]
Traversability prediction is a fundamental perception capability for autonomous navigation.
We propose a novel perception model that adopts a coarse-to-fine alignment (CALI) to perform unsupervised domain adaptation (UDA)
We show the superiorities of our proposed models over multiple baselines in several challenging domain adaptation setups.
arXiv Detail & Related papers (2023-06-26T00:39:32Z) - Bayesian optimization for sparse neural networks with trainable
activation functions [0.0]
We propose a trainable activation function whose parameters need to be estimated.
A fully Bayesian model is developed to automatically estimate from the learning data both the model weights and activation function parameters.
arXiv Detail & Related papers (2023-04-10T08:44:44Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z) - GAMI-Net: An Explainable Neural Network based on Generalized Additive
Models with Structured Interactions [5.8010446129208155]
An explainable neural network based on generalized additive models with structured interactions (GAMI-Net) is proposed to pursue a good balance between prediction accuracy and model interpretability.
GAMI-Net is a disentangled feedforward network with multiple additiveworks.
Numerical experiments on both synthetic functions and real-world datasets show that the proposed model enjoys superior interpretability.
arXiv Detail & Related papers (2020-03-16T11:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.