論文の概要: Piece of Table: A Divide-and-Conquer Approach for Selecting Sub-Tables in Table Question Answering
- arxiv url: http://arxiv.org/abs/2412.07629v1
- Date: Tue, 10 Dec 2024 16:08:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:39:12.925928
- Title: Piece of Table: A Divide-and-Conquer Approach for Selecting Sub-Tables in Table Question Answering
- Title(参考訳): テーブルのピース: テーブル質問回答におけるサブテーブルの選択方法
- Authors: Wonjin Lee, Kyumin Kim, Sungjae Lee, Jihun Lee, Kwang In KIm,
- Abstract要約: PieTa - サブテーブルベースの質問応答(QA)のための新しいフレームワーク
テーブルを小さなウィンドウに分割する反復的なプロセスを通じて動作し、LMを使用して各ウィンドウ内で関連する細胞を選択し、これらの細胞をサブテーブルにマージする。
複数の行や列にまたがる依存関係をキャプチャし、長いコンテキスト入力による制限を回避する。
- 参考スコア(独自算出の注目度): 20.926770550682964
- License:
- Abstract: Applying language models (LMs) to tables is challenging due to the inherent structural differences between two-dimensional tables and one-dimensional text for which the LMs were originally designed. Furthermore, when applying linearized tables to LMs, the maximum token lengths often imposed in self-attention calculations make it difficult to comprehensively understand the context spread across large tables. To address these challenges, we present PieTa (Piece of Table), a new framework for sub-table-based question answering (QA). PieTa operates through an iterative process of dividing tables into smaller windows, using LMs to select relevant cells within each window, and merging these cells into a sub-table. This multi-resolution approach captures dependencies across multiple rows and columns while avoiding the limitations caused by long context inputs. Instantiated as a simple iterative sub-table union algorithm, PieTa demonstrates improved performance over previous sub-table-based QA approaches.
- Abstract(参考訳): 言語モデル(LM)をテーブルに適用することは、2次元の表と1次元のテキストに固有の構造的差異があるため困難である。
さらに、線形化テーブルをLMに適用する場合、自己注意計算で課される最大トークン長は、大きなテーブルにまたがるコンテキストを包括的に理解することが困難になる。
これらの課題に対処するため,我々はPieTa (Piece of Table) を紹介した。
PieTaはテーブルを小さなウィンドウに分割する反復的なプロセスを通じて動作し、LMを使用して各ウィンドウ内で関連するセルを選択し、これらのセルをサブテーブルにマージする。
このマルチレゾリューションアプローチは、長いコンテキスト入力による制限を避けながら、複数の行や列にまたがる依存関係をキャプチャする。
単純な反復的サブテーブル結合アルゴリズムとして確立されたPieTaは、従来のサブテーブルベースのQAアプローチよりも優れた性能を示す。
関連論文リスト
- TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - HiddenTables & PyQTax: A Cooperative Game and Dataset For TableQA to Ensure Scale and Data Privacy Across a Myriad of Taxonomies [9.09415727445941]
本稿では,この課題に対する潜在的な解決法として,HiddenTablesと呼ばれる協調ゲームを提案する。
エージェントがテーブルQAタスクを解く能力を評価するコード生成「r」と「Oracleウィンドウ」の間で「HiddenTables」が再生される。
複雑なクエリを一般化および実行できないLCMの集合性を実証する多種多様なテーブルの集合について明らかな実験を行う。
論文 参考訳(メタデータ) (2024-06-16T04:53:29Z) - Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval [52.592071689901196]
本稿では,テーブル検索において,任意のクエリやデータベースに対して有用な結合関係を明らかにする手法を提案する。
提案手法は,F1スコアの最大9.3%,エンドツーエンドQAの最大5.4%の精度で,テーブル検索の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-04-15T15:55:01Z) - Chain-of-Table: Evolving Tables in the Reasoning Chain for Table
Understanding [79.9461269253121]
そこで我々は、中間思考のプロキシとして、図表データを推論チェーンで明示的に使用するChain-of-Tableフレームワークを提案する。
Chain-of-TableはWikiTQ、FeTaQA、TabFactベンチマークで最新のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-01-09T07:46:26Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
実世界のクエリは本質的に複雑で、リレーショナルデータベースやWebページ内の複数のテーブルにまたがることが多い。
我々のモデルであるMultiTabQAは、複数のテーブル上の質問に答えるだけでなく、表形式の回答を生成するために一般化する。
論文 参考訳(メタデータ) (2023-05-22T08:25:15Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
SEMv2(SEM: Split, Embed, Merge)と呼ばれるテーブル構造認識器を提案する。
本稿では,テーブル分離ラインのインスタンスレベルの識別問題に対処し,条件付き畳み込みに基づくテーブル分離ライン検出戦略を提案する。
SEMv2を包括的に評価するために、iFLYTABと呼ばれるテーブル構造認識のためのより困難なデータセットも提示する。
論文 参考訳(メタデータ) (2023-03-08T05:15:01Z) - Retrieving Complex Tables with Multi-Granular Graph Representation
Learning [20.72341939868327]
自然言語テーブル検索の課題は,自然言語クエリに基づいて意味的に関連するテーブルを検索することである。
既存の学習システムは、テーブルがデータフレームとして構成されているという仮定に基づいて、テーブルをプレーンテキストとして扱う。
多粒グラフ表現学習を用いた一般化可能なNLTRフレームワークであるグラフベーステーブル検索(GTR)を提案する。
論文 参考訳(メタデータ) (2021-05-04T20:19:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。