論文の概要: SurvBETA: Ensemble-Based Survival Models Using Beran Estimators and Several Attention Mechanisms
- arxiv url: http://arxiv.org/abs/2412.07638v1
- Date: Tue, 10 Dec 2024 16:17:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:12.751178
- Title: SurvBETA: Ensemble-Based Survival Models Using Beran Estimators and Several Attention Mechanisms
- Title(参考訳): SurvBETA: ベラン推定器といくつかの注意機構を用いたアンサンブルベース生存モデル
- Authors: Lev V. Utkin, Semen P. Khomets, Vlada A. Efremenko, Andrei V. Konstantinov,
- Abstract要約: SurvBETA(Survival Beran estimator Ensemble using Three Attention Mechanism)と呼ばれる新しいアンサンブルモデルを提案する。
提案モデルは2つの形式で表される: 訓練のための複雑な最適化問題を解くために必要な一般的な形式と、注意重みの特殊表現を考慮して単純化された形式である。
- 参考スコア(独自算出の注目度): 2.024925013349319
- License:
- Abstract: Many ensemble-based models have been proposed to solve machine learning problems in the survival analysis framework, including random survival forests, the gradient boosting machine with weak survival models, ensembles of the Cox models. To extend the set of models, a new ensemble-based model called SurvBETA (the Survival Beran estimator Ensemble using Three Attention mechanisms) is proposed where the Beran estimator is used as a weak learner in the ensemble. The Beran estimator can be regarded as a kernel regression model taking into account the relationship between instances. Outputs of weak learners in the form of conditional survival functions are aggregated with attention weights taking into account the distance between the analyzed instance and prototypes of all bootstrap samples. The attention mechanism is used three times: for implementation of the Beran estimators, for determining specific prototypes of bootstrap samples and for aggregating the weak model predictions. The proposed model is presented in two forms: in a general form requiring to solve a complex optimization problem for its training; in a simplified form by considering a special representation of the attention weights by means of the imprecise Huber's contamination model which leads to solving a simple optimization problem. Numerical experiments illustrate properties of the model on synthetic data and compare the model with other survival models on real data. A code implementing the proposed model is publicly available.
- Abstract(参考訳): 多くのアンサンブルベースのモデルは、ランダムサバイバル森林、弱いサバイバルモデルを持つ勾配上昇機、Coxモデルのアンサンブルを含む、サバイバル分析フレームワークにおける機械学習問題を解決するために提案されている。
モデルの集合を拡張するために、SurvBETA(Survival Beran estimator Ensemble using Three Attention Mechanism)と呼ばれる新しいアンサンブルベースのモデルを提案し、そこでは、Bran estimatorがアンサンブルの弱い学習者として使用される。
ベラン推定子は、インスタンス間の関係を考慮して、カーネル回帰モデルと見なすことができる。
条件付き生存関数の形での弱い学習者の出力は、分析されたインスタンスと全てのブートストラップサンプルのプロトタイプの距離を考慮に入れた注意重みで集約される。
注意機構は、ベラン推定器の実装、ブートストラップサンプルの特定のプロトタイプの決定、弱いモデル予測の集約の3回にわたって使用される。
提案モデルは2つの形態で提示される: 訓練の複雑な最適化問題を解くために必要な一般形式; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 単純型; 簡易型; 簡易型; 重み付けモデル
数値実験では、合成データ上でのモデルの性質を説明し、実データ上での他の生存モデルと比較する。
提案されたモデルを実装するコードが公開されている。
関連論文リスト
- Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、人間の理解可能な概念を通じて、モデルの振る舞いを開示し、導くための原則的な方法を提供する。
本稿では,これらのバイアスに無害でありながら事前学習モデルを活用するために設計された新しいフレームワークを提案する。
提案手法を複数のデータセット上で評価し,その解釈可能性を維持しつつ,素粒子相関によるモデル依存の低減効果を示した。
論文 参考訳(メタデータ) (2024-07-12T03:07:28Z) - Multi-View Conformal Learning for Heterogeneous Sensor Fusion [0.12086712057375555]
異種センサ融合のためのマルチビュー・シングルビューコンフォメーションモデルの構築と試験を行った。
我々のモデルは、共形予測フレームワークに基づいているため、理論的な限界信頼保証を提供する。
また,複数ビューモデルが単一ビューモデルに比べて不確実性の低い予測セットを生成することを示した。
論文 参考訳(メタデータ) (2024-02-19T17:30:09Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
本稿では,高次元表現器と呼ぶサンプルベース説明のクラスを紹介する。
私たちのワークホースは、一般化された高次元モデルに対する新しい代表者定理である。
提案手法の実証的性能について,実世界の2進分類データセットと2つの推薦システムデータセットを用いて検討した。
論文 参考訳(メタデータ) (2023-05-31T16:23:58Z) - Stability of clinical prediction models developed using statistical or
machine learning methods [0.5482532589225552]
臨床予測モデルは、複数の予測器の値に基づいて、個人の特定の健康結果のリスクを推定する。
多くのモデルは、モデルとその予測(推定リスク)の不安定性につながる小さなデータセットを使用して開発されている。
モデルの推定リスクの不安定性は、しばしばかなりのものであり、新しいデータにおける予測の誤校正として現れます。
論文 参考訳(メタデータ) (2022-11-02T11:55:28Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - MEGA: Model Stealing via Collaborative Generator-Substitute Networks [4.065949099860426]
近年のデータフリーモデルステイティングメソッドは,実際のクエリの例を使わずに,ターゲットモデルの知識を抽出するために有効であることが示されている。
本稿では,データフリーモデルステーリングフレームワーク(MEGA)を提案する。
以上の結果から,我々の訓練した代替モデルの精度と敵攻撃成功率は,最先端のデータフリーブラックボックス攻撃よりも最大で33%,40%高い値となる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-31T09:34:28Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
このようなモデルの2つの一般的なクラス、すなわちニューラルネットワークのアンサンブルと専門家のスパースミックス(スパースMoE)の相互作用について研究する。
Efficient Ensemble of Experts (E$3$)は、両モデルのクラスを最大限に活用するスケーラブルでシンプルなMoEのアンサンブルであり、深いアンサンブルよりも最大45%少ないFLOPを使用する。
論文 参考訳(メタデータ) (2021-10-07T11:58:35Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Pattern Similarity-based Machine Learning Methods for Mid-term Load
Forecasting: A Comparative Study [0.0]
パターン類似性に基づく年次電力需要予測手法について検討した。
モデルの不可欠な部分は、時系列シーケンスのパターンを用いた時系列表現である。
近接モデル,ファジィ近傍モデル,カーネル回帰モデル,一般回帰ニューラルネットワークの4つのモデルを考える。
論文 参考訳(メタデータ) (2020-03-03T12:14:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。