MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation
- URL: http://arxiv.org/abs/2412.07778v1
- Date: Sat, 23 Nov 2024 05:38:36 GMT
- Title: MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation
- Authors: Shuqi Li, Shufang Xie, Hongda Sun, Yuhan Chen, Tao Qin, Tianjun Ke, Rui Yan,
- Abstract summary: Multi-channel Interaction Network (MIN) is a novel framework designed to predict drug-target interaction (DTI)
MIN incorporates a representation learning module and a multi-channel interaction module.
MIN is not only a potent tool for DTI prediction but also offers fresh insights into the prediction of protein binding sites.
- Score: 64.4838301776267
- License:
- Abstract: Traditional drug discovery processes are both time-consuming and require extensive professional expertise. With the accumulation of drug-target interaction (DTI) data from experimental studies, leveraging modern machine-learning techniques to discern patterns between drugs and target proteins has become increasingly feasible. In this paper, we introduce the Multi-channel Interaction Network (MIN), a novel framework designed to predict DTIs through two primary components: a representation learning module and a multi-channel interaction module. The representation learning module features a C-Score Predictor-assisted screening mechanism, which selects critical residues to enhance prediction accuracy and reduce noise. The multi-channel interaction module incorporates a structure-agnostic channel, a structure-aware channel, and an extended-mixture channel, facilitating the identification of interaction patterns at various levels for optimal complementarity. Additionally, contrastive learning is utilized to harmonize the representations of diverse data types. Our experimental evaluations on public datasets demonstrate that MIN surpasses other strong DTI prediction methods. Furthermore, the case study reveals a high overlap between the residues selected by the C-Score Predictor and those in actual binding pockets, underscoring MIN's explainability capability. These findings affirm that MIN is not only a potent tool for DTI prediction but also offers fresh insights into the prediction of protein binding sites.
Related papers
- Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction [23.521628951362647]
This paper introduces a novel model, called FusionDTI, which uses a token-level Fusion module to learn fine-grained information for Drug-Target Interaction.
In particular, our FusionDTI model uses the SELFIES representation of drugs to mitigate sequence fragment invalidation.
Our experiments show that our proposed FusionDTI model achieves the best performance in DTI prediction compared with seven existing state-of-the-art baselines.
arXiv Detail & Related papers (2024-06-03T14:48:54Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Mitigating Shortcut Learning with Diffusion Counterfactuals and Diverse Ensembles [95.49699178874683]
We propose DiffDiv, an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs)
We show that DPMs can generate images with novel feature combinations, even when trained on samples displaying correlated input features.
We show that DPM-guided diversification is sufficient to remove dependence on shortcut cues, without a need for additional supervised signals.
arXiv Detail & Related papers (2023-11-23T15:47:33Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
Drug-target affinity (DTA) represents the strength of drug-target interaction (DTI)
Traditional methods lack the interpretability of the DTA prediction process.
This paper proposes a DTA prediction method with interactive learning and an autoencoder mechanism.
arXiv Detail & Related papers (2022-05-24T14:25:28Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
We take a multi-layered network perspective, where different layers correspond to different similarity metrics between drugs and targets.
To fully take advantage of topology information captured in multiple views, we develop an optimization framework, called MDMF, for DTI prediction.
The framework learns vector representations of drugs and targets that not only retain higher-order proximity across all hyper-layers, but also approximates the interactions with their inner product.
arXiv Detail & Related papers (2022-01-24T08:02:05Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
We present an end-to-end framework, DTI-GAT (Drug-Target Interaction prediction with Graph Attention networks) for DTI predictions.
DTI-GAT incorporates a deep network neural architecture that operates on graph-structured data with the attention mechanism.
Experimental evaluations show that DTI-GAT outperforms various state-of-the-art systems on the binary DTI prediction problem.
arXiv Detail & Related papers (2021-07-10T07:06:36Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
We introduce an ensemble of deep learning models (EnsembleDLM) for robust DTI prediction.
EnsembleDLM only uses the sequence information of chemical compounds and proteins, and it aggregates the predictions from multiple deep neural networks.
It achieves state-of-the-art performance in Davis and KIBA datasets.
arXiv Detail & Related papers (2021-07-02T04:00:03Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.