FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction
- URL: http://arxiv.org/abs/2406.01651v3
- Date: Mon, 07 Oct 2024 21:22:58 GMT
- Title: FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction
- Authors: Zhaohan Meng, Zaiqiao Meng, Ke Yuan, Iadh Ounis,
- Abstract summary: This paper introduces a novel model, called FusionDTI, which uses a token-level Fusion module to learn fine-grained information for Drug-Target Interaction.
In particular, our FusionDTI model uses the SELFIES representation of drugs to mitigate sequence fragment invalidation.
Our experiments show that our proposed FusionDTI model achieves the best performance in DTI prediction compared with seven existing state-of-the-art baselines.
- Score: 23.521628951362647
- License:
- Abstract: Predicting drug-target interaction (DTI) is critical in the drug discovery process. Despite remarkable advances in recent DTI models through the integration of representations from diverse drug and target encoders, such models often struggle to capture the fine-grained interactions between drugs and protein, i.e. the binding of specific drug atoms (or substructures) and key amino acids of proteins, which is crucial for understanding the binding mechanisms and optimising drug design. To address this issue, this paper introduces a novel model, called FusionDTI, which uses a token-level Fusion module to effectively learn fine-grained information for Drug-Target Interaction. In particular, our FusionDTI model uses the SELFIES representation of drugs to mitigate sequence fragment invalidation and incorporates the structure-aware (SA) vocabulary of target proteins to address the limitation of amino acid sequences in structural information, additionally leveraging pre-trained language models extensively trained on large-scale biomedical datasets as encoders to capture the complex information of drugs and targets. Experiments on three well-known benchmark datasets show that our proposed FusionDTI model achieves the best performance in DTI prediction compared with seven existing state-of-the-art baselines. Furthermore, our case study indicates that FusionDTI could highlight the potential binding sites, enhancing the explainability of the DTI prediction.
Related papers
- A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - FragXsiteDTI: Revealing Responsible Segments in Drug-Target Interaction
with Transformer-Driven Interpretation [0.09236074230806578]
Drug-Target Interaction (DTI) prediction is vital for drug discovery, yet challenges persist in achieving model interpretability and optimizing performance.
We propose a novel transformer-based model, FragXsiteDTI, that aims to address these challenges in DTI prediction.
FragXsiteDTI is the first DTI model to simultaneously leverage drug molecule fragments and protein pockets.
arXiv Detail & Related papers (2023-11-04T04:57:13Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - ResDTA: Predicting Drug-Target Binding Affinity Using Residual Skip
Connections [0.0]
We present a deep learning-based methodology for predicting DT binding affinities using just sequencing information from both targets and drugs.
The proposed model achieves the best Concordance Index (CI) performance in one of the largest benchmark datasets.
arXiv Detail & Related papers (2023-03-20T20:27:11Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
Drug-target affinity (DTA) represents the strength of drug-target interaction (DTI)
Traditional methods lack the interpretability of the DTA prediction process.
This paper proposes a DTA prediction method with interactive learning and an autoencoder mechanism.
arXiv Detail & Related papers (2022-05-24T14:25:28Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z) - DeepPurpose: a Deep Learning Library for Drug-Target Interaction
Prediction [69.7424023336611]
DeepPurpose is a comprehensive and easy-to-use deep learning library for DTI prediction.
It supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures.
We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets.
arXiv Detail & Related papers (2020-04-19T17:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.