Quantum Error Correction resilient against Atom Loss
- URL: http://arxiv.org/abs/2412.07841v2
- Date: Mon, 10 Mar 2025 14:37:16 GMT
- Title: Quantum Error Correction resilient against Atom Loss
- Authors: Hugo Perrin, Sven Jandura, Guido Pupillo,
- Abstract summary: We investigate quantum error correction protocols for neutral atoms quantum processors in the presence of atom loss.<n>For zero depolarizing noise, the atom loss threshold is about $2.6%$.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate quantum error correction protocols for neutral atoms quantum processors in the presence of atom loss. We complement the surface code with loss detection units (LDU) and analyze its performances by means of circuit-level simulations for two distinct protocols -- the standard LDU and a recently proposed teleportation-based LDU --, focussing on the impact of both atom loss and depolarizing noise on the logical error probability. We introduce and employ a new adaptive decoding procedure that leverages the knowledge of loss locations provided by the LDUs, improving logical error probabilities by nearly three orders of magnitude compared to a naive decoder. For the considered error models, our results demonstrate the existence of an error threshold line that depends linearly on the probabilities of atom loss and of depolarizing errors. For zero depolarizing noise, the atom loss threshold is about $2.6\%$.
Related papers
- Locating Rydberg Decay Error in SWAP-LRU [1.8242249887033675]
leakage from Rydberg states during the implementation of multi-qubit gates induces two-qubit error chains.
We propose a hardware-efficient approach to deal with Rydberg decay errors using SWAP-LRU, augmented by final leakage detection to locate errors.
Our findings provide new insights into located error and pave the way for a resource-efficient strategy to achieve fault-tolerant quantum computation with neutral atom arrays.
arXiv Detail & Related papers (2025-03-03T15:26:39Z) - Geometrical Approach to Logical Qubit Fidelities of Neutral Atom CSS Codes [0.0]
We map a quantum error correction (QEC) code to a $mathZ$ lattice gauge theory with disorder.
In this Article, we adopt this statistical mapping to predict error rate thresholds for neutral atom architecture.
arXiv Detail & Related papers (2024-09-06T14:53:30Z) - Surface Code Stabilizer Measurements for Rydberg Atoms [0.0]
We consider stabilizer measurements for surface codes with neutral atoms.
We identify gate protocols that minimize logical error rates in the presence of a fundamental error source.
arXiv Detail & Related papers (2024-05-26T16:33:05Z) - Circuit-based leakage-to-erasure conversion in a neutral atom quantum processor [0.5018974919510384]
Leakage out of the computational subspace is a major limitation of current state-of-the-art neutral-atom quantum computers.
We demonstrate circuit-based conversion of leakage errors to erasure errors via Leakage Detection Units (LDUs)
We find that the LDU detects atom-loss errors with 93.4% accuracy, limited by technical imperfections of our apparatus.
arXiv Detail & Related papers (2024-05-16T20:35:18Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
We focus on the topological surface code, and study the case when the code suffers from both noise and coherent noise on the multi-qubit entanglement gates.
We conclude that this type of unavoidable coherent errors could have a fatal impact on the error correction performance.
arXiv Detail & Related papers (2023-01-30T13:12:41Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.