Comparative Analysis of Deep Learning Approaches for Harmful Brain Activity Detection Using EEG
- URL: http://arxiv.org/abs/2412.07878v1
- Date: Tue, 10 Dec 2024 19:27:19 GMT
- Title: Comparative Analysis of Deep Learning Approaches for Harmful Brain Activity Detection Using EEG
- Authors: Shivraj Singh Bhatti, Aryan Yadav, Mitali Monga, Neeraj Kumar,
- Abstract summary: classification of harmful brain activities, such as seizures and periodic discharges, play a vital role in neurocritical care.
EEG provides a non-invasive method for monitoring brain activity, but the manual interpretation of EEG signals are time-consuming and rely heavily on expert judgment.
This study presents a comparative analysis of deep learning architectures, including CNNs, Vision Transformers (ViTs), and EEGNet, applied to the classification of harmful brain activities.
- Score: 7.766736511616383
- License:
- Abstract: The classification of harmful brain activities, such as seizures and periodic discharges, play a vital role in neurocritical care, enabling timely diagnosis and intervention. Electroencephalography (EEG) provides a non-invasive method for monitoring brain activity, but the manual interpretation of EEG signals are time-consuming and rely heavily on expert judgment. This study presents a comparative analysis of deep learning architectures, including Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and EEGNet, applied to the classification of harmful brain activities using both raw EEG data and time-frequency representations generated through Continuous Wavelet Transform (CWT). We evaluate the performance of these models use multimodal data representations, including high-resolution spectrograms and waveform data, and introduce a multi-stage training strategy to improve model robustness. Our results show that training strategies, data preprocessing, and augmentation techniques are as critical to model success as architecture choice, with multi-stage TinyViT and EfficientNet demonstrating superior performance. The findings underscore the importance of robust training regimes in achieving accurate and efficient EEG classification, providing valuable insights for deploying AI models in clinical practice.
Related papers
- Feature Estimation of Global Language Processing in EEG Using Attention Maps [5.173821279121835]
This study introduces a novel approach to EEG feature estimation that utilizes the weights of deep learning models to explore this association.
We demonstrate that attention maps generated from Vision Transformers and EEGNet effectively identify features that align with findings from prior studies.
The application of Mel-Spectrogram with ViTs enhances the resolution of temporal and frequency-related EEG characteristics.
arXiv Detail & Related papers (2024-09-27T22:52:31Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
We present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data.
To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings.
arXiv Detail & Related papers (2024-01-11T17:36:24Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years.
Deep learning for EEG classification tasks has been limited by the relatively small size of EEG datasets.
Data augmentation has been a key ingredient to obtain state-of-the-art performances across applications such as computer vision or speech.
arXiv Detail & Related papers (2022-06-29T09:18:15Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
We develop a novel convolutional neural network combined with an interpretation technique that allows sample-wise analysis of important features for classification.
Results show that the model achieves an average accuracy of 78.35% on 11 subjects for leave-one-out cross-subject recognition.
arXiv Detail & Related papers (2021-05-30T14:47:20Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
We propose a novel deep multi-scale neural network that discovers feature representations in multiple frequency/time ranges.
By representing EEG signals withspectral-temporal information, the proposed method can be utilized for diverse paradigms.
arXiv Detail & Related papers (2020-03-02T04:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.