Neural Scaling Laws Rooted in the Data Distribution
- URL: http://arxiv.org/abs/2412.07942v1
- Date: Tue, 10 Dec 2024 22:01:38 GMT
- Title: Neural Scaling Laws Rooted in the Data Distribution
- Authors: Ari Brill,
- Abstract summary: Deep neural networks exhibit empirical neural scaling laws, with error decreasing as a power law with increasing model or data size.
We develop a mathematical model intended to describe natural datasets using percolation theory.
We test the theory by training regression models on toy datasets derived from percolation theory simulations.
- Score: 0.0
- License:
- Abstract: Deep neural networks exhibit empirical neural scaling laws, with error decreasing as a power law with increasing model or data size, across a wide variety of architectures, tasks, and datasets. This universality suggests that scaling laws may result from general properties of natural learning tasks. We develop a mathematical model intended to describe natural datasets using percolation theory. Two distinct criticality regimes emerge, each yielding optimal power-law neural scaling laws. These regimes, corresponding to power-law-distributed discrete subtasks and a dominant data manifold, can be associated with previously proposed theories of neural scaling, thereby grounding and unifying prior works. We test the theory by training regression models on toy datasets derived from percolation theory simulations. We suggest directions for quantitatively predicting language model scaling.
Related papers
- Understanding Scaling Laws with Statistical and Approximation Theory for Transformer Neural Networks on Intrinsically Low-dimensional Data [4.481230230086981]
In deep neural networks, a model's generalization error is often observed to follow a power scaling law dependent both on the model size and the data size.
We show that our theory predicts a power law between the generalization error and both the training data size and the network size for transformers.
By leveraging low-dimensional data structures under a manifold hypothesis, we are able to explain transformer scaling laws in a way which respects the data geometry.
arXiv Detail & Related papers (2024-11-11T01:05:28Z) - Information-Theoretic Foundations for Neural Scaling Laws [20.617552198581024]
We develop information-theoretic foundations for neural scaling laws.
We observe that the optimal relation between data and model size is linear, up to logarithmic factors.
arXiv Detail & Related papers (2024-06-28T02:20:54Z) - Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
We study the theory of scaling laws in an infinite dimensional linear regression setup.
We show that the reducible part of the test error is $Theta(-(a-1) + N-(a-1)/a)$.
Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
arXiv Detail & Related papers (2024-06-12T17:53:29Z) - Neural Scaling Laws From Large-N Field Theory: Solvable Model Beyond the Ridgeless Limit [0.0]
We use large-N field theory methods to solve a model proposed by Maloney, Roberts and Sully.
We uncover a duality transformation at the diagrams level which explains the symmetry between model and training data set sizes.
arXiv Detail & Related papers (2024-05-29T18:00:01Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization.
Our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
arXiv Detail & Related papers (2024-02-02T01:41:38Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws.
We propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology.
Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps.
arXiv Detail & Related papers (2022-10-30T15:13:18Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Explaining Neural Scaling Laws [17.115592382420626]
Population loss of trained deep neural networks often follows precise power-law scaling relations.
We propose a theory that explains the origins of and connects these scaling laws.
We identify variance-limited and resolution-limited scaling behavior for both dataset and model size.
arXiv Detail & Related papers (2021-02-12T18:57:46Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.