Fast Mixing of Data Augmentation Algorithms: Bayesian Probit, Logit, and Lasso Regression
- URL: http://arxiv.org/abs/2412.07999v2
- Date: Tue, 22 Apr 2025 18:00:02 GMT
- Title: Fast Mixing of Data Augmentation Algorithms: Bayesian Probit, Logit, and Lasso Regression
- Authors: Holden Lee, Kexin Zhang,
- Abstract summary: We prove the first non-asymptotic upper bounds on mixing times of three important DA algorithms: ProbitDA, LogitDA, and LassoDA.<n>Results are generally applicable to settings with large $n$ and large $d$, including settings with highly imbalanced response data in the Probit and Logit regression.
- Score: 8.925628430885572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the widespread use of the data augmentation (DA) algorithm, the theoretical understanding of its convergence behavior remains incomplete. We prove the first non-asymptotic polynomial upper bounds on mixing times of three important DA algorithms: DA algorithm for Bayesian Probit regression (Albert and Chib, 1993, ProbitDA), Bayesian Logit regression (Polson, Scott, and Windle, 2013, LogitDA), and Bayesian Lasso regression (Park and Casella, 2008, Rajaratnam et al., 2015, LassoDA). Concretely, we demonstrate that with $\eta$-warm start, parameter dimension $d$, and sample size $n$, the ProbitDA and LogitDA require $\mathcal{O}\left(nd\log \left(\frac{\log \eta}{\epsilon}\right)\right)$ steps to obtain samples with at most $\epsilon$ TV error, whereas the LassoDA requires $\mathcal{O}\left(d^2(d\log d +n \log n)^2 \log \left(\frac{\eta}{\epsilon}\right)\right)$ steps. The results are generally applicable to settings with large $n$ and large $d$, including settings with highly imbalanced response data in the Probit and Logit regression. The proofs are based on the Markov chain conductance and isoperimetric inequalities. Assuming that data are independently generated from either a bounded, sub-Gaussian, or log-concave distribution, we improve the guarantees for ProbitDA and LogitDA to $\tilde{\mathcal{O}}(n+d)$ with high probability, and compare it with the best known guarantees of Langevin Monte Carlo and Metropolis Adjusted Langevin Algorithm. We also discuss the mixing times of the three algorithms under feasible initialization.
Related papers
- Sign Operator for Coping with Heavy-Tailed Noise in Non-Convex Optimization: High Probability Bounds Under $(L_0, L_1)$-Smoothness [74.18546828528298]
We show that SignSGD with Majority Voting can robustly work on the whole range of complexity with $kappakappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappakappakappa-1right, kappa
arXiv Detail & Related papers (2025-02-11T19:54:11Z) - Robust Sparse Regression with Non-Isotropic Designs [4.964650614497048]
We develop a technique to design efficiently computable estimators for sparse linear regression in the simultaneous presence of two adversaries.
We provide a novel analysis of weighted penalized Huber loss that is suitable for heavy-tailed designs in the presence of two adversaries.
arXiv Detail & Related papers (2024-10-31T13:51:59Z) - Turnstile $\ell_p$ leverage score sampling with applications [56.403488578703865]
We develop a novel algorithm for sampling rows $a_i$ of a matrix $AinmathbbRntimes d$, proportional to their $ell_p$ norm, when $A$ is presented in a turnstile data stream.
Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $tildea_i approx a_i$, and approximates their sampling probabilities up to $varepsilon$ relative error.
For logistic regression, our framework yields the first algorithm that achieves a $
arXiv Detail & Related papers (2024-06-01T07:33:41Z) - Mirror Descent Algorithms with Nearly Dimension-Independent Rates for
Differentially-Private Stochastic Saddle-Point Problems [6.431793114484429]
We propose $sqrtlog(d)/sqrtn + log(d)/[nvarepsilon]2/5$ to solve the problem of differentially-private saddle-points in the polyhedral setting.
We show that our algorithms attain a rate of $sqrtlog(d)/sqrtn + log(d)/[nvarepsilon]2/5$ with constant success.
arXiv Detail & Related papers (2024-03-05T12:28:00Z) - Provably Efficient High-Dimensional Bandit Learning with Batched
Feedbacks [93.00280593719513]
We study high-dimensional multi-armed contextual bandits with batched feedback where the $T$ steps of online interactions are divided into $L$ batches.
In specific, each batch collects data according to a policy that depends on previous batches and the rewards are revealed only at the end of the batch.
Our algorithm achieves regret bounds comparable to those in fully sequential setting with only $mathcalO( log T)$ batches.
arXiv Detail & Related papers (2023-11-22T06:06:54Z) - Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex
Optimization [14.69450310695133]
Existing analyses of signSGD rely on assuming that data are with replacement in each iteration.
We show that Sign has the same $O(log(nT)/stnT + log (nT)sqrtn/sT)$.
We back up theoretical findings through experiments on simulated real-world problems.
arXiv Detail & Related papers (2023-10-24T16:25:13Z) - Improved Analysis of Sparse Linear Regression in Local Differential
Privacy Model [38.66115499136791]
We revisit the problem of sparse linear regression in the local differential privacy (LDP) model.
We propose an innovative NLDP algorithm, the very first of its kind for the problem.
Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.
arXiv Detail & Related papers (2023-10-11T10:34:52Z) - Private Isotonic Regression [54.32252900997422]
We consider the problem of isotonic regression over a partially ordered set (poset) $mathcalX$ and for any Lipschitz loss function.
We obtain a pure-DP algorithm that has an expected excess empirical risk of roughly $mathrmwidth(mathcalX) cdot log|mathcalX| / n$, where $mathrmwidth(mathcalX)$ is the width of the poset.
We show that the bounds above are essentially the best that can be
arXiv Detail & Related papers (2022-10-27T05:08:07Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - DASHA: Distributed Nonconvex Optimization with Communication
Compression, Optimal Oracle Complexity, and No Client Synchronization [77.34726150561087]
We develop and analyze DASHA: a new family of methods for noneps distributed optimization problems.
Unlike MARINA, the new methods DASHA, DASHA-MVR send compressed vectors only and never synchronize the nodes, which makes them more practical for learning.
arXiv Detail & Related papers (2022-02-02T20:10:40Z) - Structured Logconcave Sampling with a Restricted Gaussian Oracle [23.781520510778716]
We give algorithms for sampling several structured logconcave families to high accuracy.
We further develop a reduction framework, inspired by proximal point methods in convex optimization.
arXiv Detail & Related papers (2020-10-07T01:43:07Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.