Ask1: Development and Reinforcement Learning-Based Control of a Custom Quadruped Robot
- URL: http://arxiv.org/abs/2412.08019v1
- Date: Wed, 11 Dec 2024 01:56:47 GMT
- Title: Ask1: Development and Reinforcement Learning-Based Control of a Custom Quadruped Robot
- Authors: Yuxing Lu, Yufei Xue, Guiyang Xin, Chenkun Qi, Yan Zhuang,
- Abstract summary: We present the design, development, and experimental validation of a custom-built quadruped robot, Ask1.<n>The Ask1 robot shares similar morphology with the Unitree Go1, but features custom hardware components and a different control architecture.<n>We extend previous reinforcement learning-based control methods to the Ask1 robot, demonstrating the applicability of our approach in real-world scenarios.
- Score: 8.474007797143567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present the design, development, and experimental validation of a custom-built quadruped robot, Ask1. The Ask1 robot shares similar morphology with the Unitree Go1, but features custom hardware components and a different control architecture. We transfer and extend previous reinforcement learning (RL)-based control methods to the Ask1 robot, demonstrating the applicability of our approach in real-world scenarios. By eliminating the need for Adversarial Motion Priors (AMP) and reference trajectories, we introduce a novel reward function to guide the robot's motion style. We demonstrate the generalization capability of the proposed RL algorithm by training it on both the Go1 and Ask1 robots. Simulation and real-world experiments validate the effectiveness of this method, showing that Ask1, like the Go1, is capable of navigating various rugged terrains.
Related papers
- Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics [55.05920313034645]
We introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control.<n>Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions.<n>Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks.
arXiv Detail & Related papers (2025-05-29T16:41:12Z) - Trajectory Adaptation using Large Language Models [0.8704964543257245]
Adapting robot trajectories based on human instructions as per new situations is essential for achieving more intuitive and scalable human-robot interactions.
This work proposes a flexible language-based framework to adapt generic robotic trajectories produced by off-the-shelf motion planners.
We utilize pre-trained LLMs to adapt trajectory waypoints by generating code as a policy for dense robot manipulation.
arXiv Detail & Related papers (2025-04-17T08:48:23Z) - GR00T N1: An Open Foundation Model for Generalist Humanoid Robots [133.23509142762356]
General-purpose robots need a versatile body and an intelligent mind.
Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy.
We introduce GR00T N1, an open foundation model for humanoid robots.
arXiv Detail & Related papers (2025-03-18T21:06:21Z) - Force-Based Robotic Imitation Learning: A Two-Phase Approach for Construction Assembly Tasks [2.6092377907704254]
This paper proposes a two-phase system to improve robot learning.
The first phase captures real-time data from operators using a robot arm linked with a virtual simulator via ROS-Sharp.
In the second phase, this feedback is converted into robotic motion instructions, using a generative approach to incorporate force feedback into the learning process.
arXiv Detail & Related papers (2025-01-24T22:01:23Z) - Hand-Object Interaction Pretraining from Videos [77.92637809322231]
We learn general robot manipulation priors from 3D hand-object interaction trajectories.
We do so by sharing both the human hand and the manipulated object in 3D space and human motions to robot actions.
We empirically demonstrate that finetuning this policy, with both reinforcement learning (RL) and behavior cloning (BC), enables sample-efficient adaptation to downstream tasks and simultaneously improves robustness and generalizability compared to prior approaches.
arXiv Detail & Related papers (2024-09-12T17:59:07Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - A comparison of controller architectures and learning mechanisms for
arbitrary robot morphologies [2.884244918665901]
What combination of a robot controller and a learning method should be used, if the morphology of the learning robot is not known in advance?
We perform an experimental comparison of three controller-and-learner combinations.
We compare their efficacy, efficiency, and robustness.
arXiv Detail & Related papers (2023-09-25T07:11:43Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Learning Robust, Agile, Natural Legged Locomotion Skills in the Wild [17.336553501547282]
We propose a new framework for learning robust, agile and natural legged locomotion skills over challenging terrain.
Empirical results on both simulation and real world of a quadruped robot demonstrate that our proposed algorithm enables robustly traversing challenging terrains.
arXiv Detail & Related papers (2023-04-21T11:09:23Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
This work introduces a paradigm for pre-training a general purpose representation that can serve as a starting point for multiple tasks on a given robot.
We present the Perception-Action Causal Transformer (PACT), a generative transformer-based architecture that aims to build representations directly from robot data in a self-supervised fashion.
We show that finetuning small task-specific networks on top of the larger pretrained model results in significantly better performance compared to training a single model from scratch for all tasks simultaneously.
arXiv Detail & Related papers (2022-09-22T16:20:17Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.