Learning Robust, Agile, Natural Legged Locomotion Skills in the Wild
- URL: http://arxiv.org/abs/2304.10888v3
- Date: Fri, 6 Oct 2023 14:17:13 GMT
- Title: Learning Robust, Agile, Natural Legged Locomotion Skills in the Wild
- Authors: Yikai Wang, Zheyuan Jiang, Jianyu Chen
- Abstract summary: We propose a new framework for learning robust, agile and natural legged locomotion skills over challenging terrain.
Empirical results on both simulation and real world of a quadruped robot demonstrate that our proposed algorithm enables robustly traversing challenging terrains.
- Score: 17.336553501547282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, reinforcement learning has become a promising and polular solution
for robot legged locomotion. Compared to model-based control, reinforcement
learning based controllers can achieve better robustness against uncertainties
of environments through sim-to-real learning. However, the corresponding
learned gaits are in general overly conservative and unatural. In this paper,
we propose a new framework for learning robust, agile and natural legged
locomotion skills over challenging terrain. We incorporate an adversarial
training branch based on real animal locomotion data upon a teacher-student
training pipeline for robust sim-to-real transfer. Empirical results on both
simulation and real world of a quadruped robot demonstrate that our proposed
algorithm enables robustly traversing challenging terrains such as stairs,
rocky ground and slippery floor with only proprioceptive perception. Meanwhile,
the gaits are more agile, natural, and energy efficient compared to the
baselines. Both qualitative and quantitative results are presented in this
paper.
Related papers
- Infer and Adapt: Bipedal Locomotion Reward Learning from Demonstrations
via Inverse Reinforcement Learning [5.246548532908499]
This paper brings state-of-the-art Inverse Reinforcement Learning (IRL) techniques to solving bipedal locomotion problems over complex terrains.
We propose algorithms for learning expert reward functions, and we subsequently analyze the learned functions.
We empirically demonstrate that training a bipedal locomotion policy with the inferred reward functions enhances its walking performance on unseen terrains.
arXiv Detail & Related papers (2023-09-28T00:11:06Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
Deep reinforcement learning is a promising approach to learning policies in uncontrolled environments.
Recent advancements in machine learning algorithms and libraries combined with a carefully tuned robot controller lead to learning quadruped in only 20 minutes in the real world.
arXiv Detail & Related papers (2022-08-16T17:37:36Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference.
We present experimental results showing that even in a model-free setup, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot.
arXiv Detail & Related papers (2021-10-28T10:14:47Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
We develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks.
We show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible.
We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
arXiv Detail & Related papers (2020-04-27T17:38:53Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics.
We present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals.
arXiv Detail & Related papers (2020-04-02T02:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.