Emergent topological re-entrant phase transition in a generalized quasiperiodic modulated Su-Schrieffer-Heeger model
- URL: http://arxiv.org/abs/2412.08067v1
- Date: Wed, 11 Dec 2024 03:23:54 GMT
- Title: Emergent topological re-entrant phase transition in a generalized quasiperiodic modulated Su-Schrieffer-Heeger model
- Authors: Xiao-Ming Wang, Shan-Zhong Li, Zhi Li,
- Abstract summary: We study the topological properties of the one-dimensional generalized quasiperiodic Su-Schrieffer-Heeger model.
The results reveal that topological re-entrant phase transition emerges.
- Score: 3.890825942432386
- License:
- Abstract: We study the topological properties of the one-dimensional generalized quasiperiodic modulated Su-Schrieffer-Heeger model. The results reveal that topological re-entrant phase transition emerges. Through the analysis of a real-space winding number , we divide the emergent topological re-entrant phase transitions into two types. The first is the re-entrant phase transition from the traditional topological insulator phase into the topological Anderson insulator phase, and the second is the re-entrant phenomenon from one topological Anderson insulator phase into another topological Anderson insulator phase. These two types of re-entrant phase transition correspond to bounded and unbounded cases of quasiperiodic modulation, respectively. Furthermore, we verify the above topological re-entrant phase transitions by analyzing the Lyapunov exponent and bulk gap. Since Su-Schrieffer-Heeger models have been realized in various artificial systems (such as cold atoms, optical waveguide arrays, ion traps, Rydberg atom arrays, etc.), the two types of topological re-entrant phase transition predicted in this paper are expected to be realized in the near future.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Spin Winding and Topological Nature of Transitions in Jaynes-Cummings
Model with Stark Non-linear Coupling [0.0]
We study single-qubit topological phase transitions in light-matter interactions.
Our results may provide a deeper insight for the few-body phase transitions in light-matter interactions.
arXiv Detail & Related papers (2023-08-30T18:51:55Z) - Topological transitions of the generalized Pancharatnam-Berry phase [55.41644538483948]
We show that geometric phases can be induced by a sequence of generalized measurements implemented on a single qubit.
We demonstrate and study this transition experimentally employing an optical platform.
Our protocol can be interpreted in terms of environment-induced geometric phases.
arXiv Detail & Related papers (2022-11-15T21:31:29Z) - Exploring interacting topological insulator of extended
Su-Schrieffer-Heeger model [0.0]
We investigate many-body topological physics of interacting fermions in an extended Su-Schrieffer-Heeger model.
The interaction-driven phase transition from topological insulator to charge density wave (CDW) phase can be identified.
The models analyzed here can be implemented with ultracold atoms on optical superlattices.
arXiv Detail & Related papers (2022-07-31T08:15:04Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Topological Phase Transitions Induced by Varying Topology and Boundaries
in the Toric Code [0.0]
We study the sensitivity of such phases of matter to the underlying topology.
We claim that these phase transitions are accompanied by broken symmetries in the excitation space.
We show that the phase transition between such steady states is effectively captured by the expectation value of the open-loop operator.
arXiv Detail & Related papers (2020-04-07T18:00:06Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z) - Simulation of Higher-Order Topological Phases and Related Topological
Phase Transitions in a Superconducting Qubit [13.847665374507876]
We simulate a two-dimensional second-order topological phase in a superconducting qubit.
We observe the realization of higher-order topology directly through the measurement of the pseudo-spin texture in momentum space of the bulk.
Our work sheds new light on the study of higher-order topological phases and topological phase transitions.
arXiv Detail & Related papers (2020-01-12T14:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.