Generative Zoo
- URL: http://arxiv.org/abs/2412.08101v1
- Date: Wed, 11 Dec 2024 04:57:53 GMT
- Title: Generative Zoo
- Authors: Tomasz Niewiadomski, Anastasios Yiannakidis, Hanz Cuevas-Velasquez, Soubhik Sanyal, Michael J. Black, Silvia Zuffi, Peter Kulits,
- Abstract summary: We introduce a pipeline that samples a diverse set of poses and shapes for a variety of mammalian quadrupeds and generates realistic images with corresponding ground-truth pose and shape parameters.
We train a 3D pose and shape regressor on GenZoo, which achieves state-of-the-art performance on a real-world animal pose and shape estimation benchmark.
- Score: 41.65977386204797
- License:
- Abstract: The model-based estimation of 3D animal pose and shape from images enables computational modeling of animal behavior. Training models for this purpose requires large amounts of labeled image data with precise pose and shape annotations. However, capturing such data requires the use of multi-view or marker-based motion-capture systems, which are impractical to adapt to wild animals in situ and impossible to scale across a comprehensive set of animal species. Some have attempted to address the challenge of procuring training data by pseudo-labeling individual real-world images through manual 2D annotation, followed by 3D-parameter optimization to those labels. While this approach may produce silhouette-aligned samples, the obtained pose and shape parameters are often implausible due to the ill-posed nature of the monocular fitting problem. Sidestepping real-world ambiguity, others have designed complex synthetic-data-generation pipelines leveraging video-game engines and collections of artist-designed 3D assets. Such engines yield perfect ground-truth annotations but are often lacking in visual realism and require considerable manual effort to adapt to new species or environments. Motivated by these shortcomings, we propose an alternative approach to synthetic-data generation: rendering with a conditional image-generation model. We introduce a pipeline that samples a diverse set of poses and shapes for a variety of mammalian quadrupeds and generates realistic images with corresponding ground-truth pose and shape parameters. To demonstrate the scalability of our approach, we introduce GenZoo, a synthetic dataset containing one million images of distinct subjects. We train a 3D pose and shape regressor on GenZoo, which achieves state-of-the-art performance on a real-world animal pose and shape estimation benchmark, despite being trained solely on synthetic data. https://genzoo.is.tue.mpg.de
Related papers
- L3D-Pose: Lifting Pose for 3D Avatars from a Single Camera in the Wild [15.174438063000453]
3D pose estimation provides a more comprehensive solution by incorporating depth, yet creating 3D pose datasets for animals is challenging due to their dynamic and unpredictable behaviours in natural settings.
We propose a framework with systematically synthesized datasets for lifting poses from 2D to 3D and then utilize this to re-target motion from wild settings onto arbitrary avatars.
arXiv Detail & Related papers (2025-01-02T10:04:12Z) - ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data [0.2302001830524133]
We use synthetic data generated with a 3D simulator to obtain the first synthetic dataset that can be used for both detection and 2D pose estimation of zebras.
We extensively train and benchmark our detection and 2D pose estimation models on multiple real-world and synthetic datasets.
These experiments show how the models trained from scratch and only with synthetic data can consistently generalize to real-world images of zebras.
arXiv Detail & Related papers (2024-08-20T13:28:37Z) - Animal Avatars: Reconstructing Animatable 3D Animals from Casual Videos [26.65191922949358]
We present a method to build animatable dog avatars from monocular videos.
This is challenging as animals display a range of (unpredictable) non-rigid movements and have a variety of appearance details.
We develop an approach that links the video frames via a 4D solution that jointly solves for animal's pose variation, and its appearance.
arXiv Detail & Related papers (2024-03-25T18:41:43Z) - 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
We propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations.
By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
arXiv Detail & Related papers (2024-03-17T06:31:16Z) - Learning the 3D Fauna of the Web [70.01196719128912]
We develop 3D-Fauna, an approach that learns a pan-category deformable 3D animal model for more than 100 animal species jointly.
One crucial bottleneck of modeling animals is the limited availability of training data.
We show that prior category-specific attempts fail to generalize to rare species with limited training images.
arXiv Detail & Related papers (2024-01-04T18:32:48Z) - Virtual Pets: Animatable Animal Generation in 3D Scenes [84.0990909455833]
We introduce Virtual Pet, a novel pipeline to model realistic and diverse motions for target animal species within a 3D environment.
We leverage monocular internet videos and extract deformable NeRF representations for the foreground and static NeRF representations for the background.
We develop a reconstruction strategy, encompassing species-level shared template learning and per-video fine-tuning.
arXiv Detail & Related papers (2023-12-21T18:59:30Z) - Animal3D: A Comprehensive Dataset of 3D Animal Pose and Shape [32.11280929126699]
We propose Animal3D, the first comprehensive dataset for mammal animal 3D pose and shape estimation.
Animal3D consists of 3379 images collected from 40 mammal species, high-quality annotations of 26 keypoints, and importantly the pose and shape parameters of the SMAL model.
Based on the Animal3D dataset, we benchmark representative shape and pose estimation models at: (1) supervised learning from only the Animal3D data, (2) synthetic to real transfer from synthetically generated images, and (3) fine-tuning human pose and shape estimation models.
arXiv Detail & Related papers (2023-08-22T18:57:07Z) - Prior-Aware Synthetic Data to the Rescue: Animal Pose Estimation with
Very Limited Real Data [18.06492246414256]
We present a data efficient strategy for pose estimation in quadrupeds that requires only a small amount of real images from the target animal.
It is confirmed that fine-tuning a backbone network with pretrained weights on generic image datasets such as ImageNet can mitigate the high demand for target animal pose data.
We introduce a prior-aware synthetic animal data generation pipeline called PASyn to augment the animal pose data essential for robust pose estimation.
arXiv Detail & Related papers (2022-08-30T01:17:50Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
State-of-the-art 3D generative models are GANs which use neural 3D volumetric representations for synthesis.
In this paper, we design a 3D GAN which can learn a disentangled model of objects, just from monocular observations.
arXiv Detail & Related papers (2022-03-29T22:03:18Z) - Deformation-aware Unpaired Image Translation for Pose Estimation on
Laboratory Animals [56.65062746564091]
We aim to capture the pose of neuroscience model organisms, without using any manual supervision, to study how neural circuits orchestrate behaviour.
Our key contribution is the explicit and independent modeling of appearance, shape and poses in an unpaired image translation framework.
We demonstrate improved pose estimation accuracy on Drosophila melanogaster (fruit fly), Caenorhabditis elegans (worm) and Danio rerio (zebrafish)
arXiv Detail & Related papers (2020-01-23T15:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.