論文の概要: Seeing Syntax: Uncovering Syntactic Learning Limitations in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2412.08111v1
- Date: Wed, 11 Dec 2024 05:37:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:04:25.284419
- Title: Seeing Syntax: Uncovering Syntactic Learning Limitations in Vision-Language Models
- Title(参考訳): Seeing Syntax: 視覚言語モデルにおける構文学習の限界を明らかにする
- Authors: Sri Harsha Dumpala, David Arps, Sageev Oore, Laura Kallmeyer, Hassan Sajjad,
- Abstract要約: 視覚言語モデル(VLM)は、画像キャプションとテキスト・ツー・イメージ生成の基礎モデルとして機能する。
近年の研究では、VLMテキストエンコーダ(特に構成性や意味理解など)の制限が強調されている。
- 参考スコア(独自算出の注目度): 18.87130615326443
- License:
- Abstract: Vision-language models (VLMs), serve as foundation models for multi-modal applications such as image captioning and text-to-image generation. Recent studies have highlighted limitations in VLM text encoders, particularly in areas like compositionality and semantic understanding, though the underlying reasons for these limitations remain unclear. In this work, we aim to address this gap by analyzing the syntactic information, one of the fundamental linguistic properties, encoded by the text encoders of VLMs. We perform a thorough analysis comparing VLMs with different objective functions, parameter size and training data size, and with uni-modal language models (ULMs) in their ability to encode syntactic knowledge. Our findings suggest that ULM text encoders acquire syntactic information more effectively than those in VLMs. The syntactic information learned by VLM text encoders is shaped primarily by the pre-training objective, which plays a more crucial role than other factors such as model architecture, model size, or the volume of pre-training data. Models exhibit different layer-wise trends where CLIP performance dropped across layers while for other models, middle layers are rich in encoding syntactic knowledge.
- Abstract(参考訳): 視覚言語モデル(VLM)は、画像キャプションやテキスト・ツー・イメージ生成などのマルチモーダル・アプリケーションの基盤モデルとして機能する。
近年の研究では、VLMテキストエンコーダ(特に構成性や意味理解など)の制限を強調している。
本研究では,VLMのテキストエンコーダによって符号化された基本言語特性の一つである構文情報を解析することにより,このギャップに対処することを目的とする。
我々は、VLMを異なる目的関数、パラメータサイズ、トレーニングデータサイズ、および合成知識をエンコードするユニモーダル言語モデル(ULM)と比較し、徹底的な分析を行う。
以上の結果から,ULMテキストエンコーダはVLMよりも効率的に構文情報を取得することが示唆された。
VLMテキストエンコーダが学習する構文情報は、主に事前学習の目的によって形成され、モデルアーキテクチャやモデルサイズ、事前学習データのボリュームなど、他の要因よりも重要な役割を果たす。
他のモデルでは、中間層は構文知識の符号化に富んでいる。
関連論文リスト
- Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders [89.38717274524681]
本研究では,視覚エンコーダと解像度の混合を用いたマルチモーダル大言語モデル(MLLM)の設計空間について検討する。
我々の発見は、様々な既存の戦略に共通するいくつかの基本原則を明らかにし、合理化されているが効果的な設計アプローチへと繋がる。
その結果生まれたMLLMのファミリーであるEagleは、MLLMベンチマークで他の主要なオープンソースモデルを上回っている。
論文 参考訳(メタデータ) (2024-08-28T17:59:31Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Investigating Decoder-only Large Language Models for Speech-to-text Translation [39.17113782374464]
大規模言語モデル (LLM) は、様々なドメインにまたがる例外的な推論能力、一般化可能性、およびレイテンシで知られている。
我々は,LLMが直接符号化された音声表現を消費し,テキスト翻訳を生成することができるデコーダのみのアーキテクチャを提案する。
本モデルでは,プロプライエタリなデータを必要としないモデル間で,CoVoST 2およびFLEURSの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-03T14:42:49Z) - SUGARCREPE++ Dataset: Vision-Language Model Sensitivity to Semantic and Lexical Alterations [13.608653575298183]
SuGARCREPE++データセットを導入し、視覚・言語モデルのセマンティックな変化に対する感度を解析する。
SuGARCREPE++では,構成性データセットの性能向上に寄与するすべてのモデルが同等に動作しないことを示す。
論文 参考訳(メタデータ) (2024-06-17T03:22:20Z) - Q-GroundCAM: Quantifying Grounding in Vision Language Models via GradCAM [3.2688425993442696]
多くの調査研究により、最も優れた視覚と言語モデル(VLM)でさえ、構成シーン理解の側面を捉えるのに苦労していることが明らかになった。
VLMの最近の進歩には、モデルサイズとデータセットサイズの両方のスケールアップ、追加のトレーニング目標と監視レベルが含まれる。
本稿では,GradCAMアクティベーションを利用して,事前学習したVLMのグラウンドディング能力を厳格に評価する,新しい定量的メトリクススイートを提案する。
論文 参考訳(メタデータ) (2024-04-29T22:06:17Z) - Synth$^2$: Boosting Visual-Language Models with Synthetic Captions and Image Embeddings [16.28853186016663]
効率的な視覚言語モデル(VLM)トレーニングのための合成画像テキストペアを作成する。
本手法では,LLMが生成したキャプションから画像埋め込みを合成するために,事前訓練されたテキスト・ツー・イメージモデルを用いる。
我々のVLMは、人工的なデータに基づいて微調整され、人間に注釈付けされたデータにのみ訓練されたモデルに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2024-03-12T15:36:42Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
非言語的なイメージを外国語のような個別のトークン列に変換するために、よく設計されたビジュアルトークン化器を導入する。
結果として得られる視覚トークンは、単語に相応しいハイレベルな意味論を含み、画像から変化する動的シーケンス長もサポートする。
この統合によりLaVITは、マルチモーダルコンテンツの理解と生成を同時に行うための印象的な汎用インターフェースとして機能する。
論文 参考訳(メタデータ) (2023-09-09T03:01:38Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
MLLM(Multimodal Large Language Models)の機能を拡張するために, PVIT( Position-enhanced Visual Instruction Tuning)を提案する。
この統合により、MLLMの画像のより詳細な理解が促進される。
本稿では,提案モデルの優位性を示す定量的実験と定性解析の両方について述べる。
論文 参考訳(メタデータ) (2023-08-25T15:33:47Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。