論文の概要: A Review of Intelligent Device Fault Diagnosis Technologies Based on Machine Vision
- arxiv url: http://arxiv.org/abs/2412.08148v1
- Date: Wed, 11 Dec 2024 07:06:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:55.425063
- Title: A Review of Intelligent Device Fault Diagnosis Technologies Based on Machine Vision
- Title(参考訳): 機械ビジョンに基づくインテリジェントデバイス故障診断技術の検討
- Authors: Guiran Liu, Binrong Zhu,
- Abstract要約: 本稿ではトランスフォーマーの構造,動作原理,メリット,特に自己注意機構と並列計算機能について詳述する。
ViT(Vision Transformer)やその拡張など、視覚タスクの精度と効率を改善するために自己認識を活用する重要なTransformerモデルの亜種を強調している。
これらの進歩にもかかわらず、広範なラベル付きデータセットへの依存、重要な計算要求、リソース制限されたデバイスにモデルをデプロイすることの難しさなど、課題は残る。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper provides a comprehensive review of mechanical equipment fault diagnosis methods, focusing on the advancements brought by Transformer-based models. It details the structure, working principles, and benefits of Transformers, particularly their self-attention mechanism and parallel computation capabilities, which have propelled their widespread application in natural language processing and computer vision. The discussion highlights key Transformer model variants, such as Vision Transformers (ViT) and their extensions, which leverage self-attention to improve accuracy and efficiency in visual tasks. Furthermore, the paper examines the application of Transformer-based approaches in intelligent fault diagnosis for mechanical systems, showcasing their superior ability to extract and recognize patterns from complex sensor data for precise fault identification. Despite these advancements, challenges remain, including the reliance on extensive labeled datasets, significant computational demands, and difficulties in deploying models on resource-limited devices. To address these limitations, the paper proposes future research directions, such as developing lightweight Transformer architectures, integrating multimodal data sources, and enhancing adaptability to diverse operational conditions. These efforts aim to further expand the application of Transformer-based methods in mechanical fault diagnosis, making them more robust, efficient, and suitable for real-world industrial environments.
- Abstract(参考訳): 本稿では, トランスフォーマーモデルによる機械設備故障診断手法の総合的なレビューを行い, トランスフォーマーモデルによる進展に着目した。
トランスフォーマーの構造、動作原理、利点、特に、自然言語処理やコンピュータビジョンに広く応用されている自己注意機構と並列計算能力について詳述する。
議論では、視覚変換器(ViT)などの重要なトランスフォーマーモデルと、視覚タスクの精度と効率を改善するために自己認識を活用する拡張を強調している。
さらに,機械系におけるインテリジェンス・フォールト診断へのトランスフォーマー・アプローチの適用について検討し,複雑なセンサデータからパターンを抽出・認識し,高精度なフォールト同定を行う能力を示した。
これらの進歩にもかかわらず、広範なラベル付きデータセットへの依存、重要な計算要求、リソース制限されたデバイスにモデルをデプロイすることの難しさなど、課題は残る。
これらの制約に対処するため、軽量トランスフォーマーアーキテクチャの開発、マルチモーダルデータソースの統合、多様な運用条件への適応性の向上など、今後の研究方向性を提案する。
これらの取り組みは、機械的故障診断におけるTransformerベースの手法の適用をさらに拡大し、より堅牢で、効率的で、現実の産業環境に適したものにすることを目的としている。
関連論文リスト
- Adventures of Trustworthy Vision-Language Models: A Survey [54.76511683427566]
本稿では,バイス,ロバスト性,解釈可能性の3つの基本原理を用いて,視覚言語変換器の徹底的な検証を行う。
本研究の主な目的は, トランスフォーマーの実用化に伴う複雑さと複雑さを掘り下げることであり, 信頼性と説明責任を高める方法の理解を深めることである。
論文 参考訳(メタデータ) (2023-12-07T11:31:20Z) - Efficient Vision Transformer for Accurate Traffic Sign Detection [0.0]
本研究では,自動運転車や運転支援システムにおける交通標識検出の課題について論じる。
この課題に対処するため、Transformerモデル、特にVision Transformerの派生版が導入された。
本研究はトランスフォーマーモデルの効率を高めるために,局所性帰納バイアスとトランスフォーマーモジュールを統合する新しい戦略を提案する。
論文 参考訳(メタデータ) (2023-11-02T17:44:32Z) - A survey on efficient vision transformers: algorithms, techniques, and
performance benchmarking [19.65897437342896]
Vision Transformer (ViT) アーキテクチャは、コンピュータビジョンアプリケーションに取り組むために人気が高まり、広く使われている。
本稿では,ビジョントランスフォーマーを効率的にするための戦略を数学的に定義し,最先端の方法論を記述・議論し,その性能を異なるアプリケーションシナリオで解析する。
論文 参考訳(メタデータ) (2023-09-05T08:21:16Z) - Transformers in Reinforcement Learning: A Survey [7.622978576824539]
トランスフォーマーは自然言語処理、コンピュータビジョン、ロボット工学といった領域に影響を与え、他のニューラルネットワークと比較してパフォーマンスを改善している。
この調査では、トランスフォーマーが強化学習(RL)でどのように使われているかを調査し、不安定なトレーニング、クレジット割り当て、解釈可能性の欠如、部分的可観測性といった課題に対処するための有望な解決策と見なされている。
論文 参考訳(メタデータ) (2023-07-12T07:51:12Z) - Knowledge-Infused Self Attention Transformers [11.008412414253662]
トランスフォーマーベースの言語モデルは、様々な自然言語処理タスクにおいて驚くべき成功を収めた。
本稿では,トランスモデルの異なるコンポーネントに知識を注入するための体系的手法を提案する。
論文 参考訳(メタデータ) (2023-06-23T13:55:01Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformerは、シーケンシャルデータ内のコンテキスト関係を理解するために自己認識メカニズムを使用するディープニューラルネットワークである。
Transformerモデルは、入力シーケンス要素間の長い依存関係を処理し、並列処理を可能にする。
我々の調査では、トランスフォーマーベースのモデルのためのトップ5のアプリケーションドメインを特定します。
論文 参考訳(メタデータ) (2023-06-11T23:13:51Z) - T4PdM: a Deep Neural Network based on the Transformer Architecture for
Fault Diagnosis of Rotating Machinery [0.0]
本稿では,Transformerアーキテクチャの修正版であるT4PdMに基づいて,自動故障分類器モデルを構築した。
T4PdMは2つのデータセットの総合精度99.98%と98%を達成した。
回転する産業機械の故障の検出・分類におけるモデルの有用性を実証した。
論文 参考訳(メタデータ) (2022-04-07T20:31:45Z) - AdaViT: Adaptive Vision Transformers for Efficient Image Recognition [78.07924262215181]
AdaViTは、パッチ、セルフアテンションヘッド、およびトランスフォーマーブロックを使用するための利用ポリシーを導出する適応フレームワークである。
本手法は,0.8%の精度で,最先端のビジョントランスに比べて2倍以上の効率向上を実現している。
論文 参考訳(メタデータ) (2021-11-30T18:57:02Z) - Blending Anti-Aliasing into Vision Transformer [57.88274087198552]
不連続なパッチ単位のトークン化プロセスは、ジャッジされたアーティファクトをアテンションマップに暗黙的に導入する。
エイリアス効果は、離散パターンを使用して高周波または連続的な情報を生成し、区別不能な歪みをもたらす。
本稿では,前述の問題を緩和するためのAliasing-Reduction Module(ARM)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:30:02Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
畳み込みニューラルネットワークとトランスの両方の恩恵を受けるアーキテクチャであるTransDepthを提案します。
連続ラベルを含む画素単位での予測問題にトランスフォーマーを適用する最初の論文である。
論文 参考訳(メタデータ) (2021-03-22T18:00:13Z) - A Survey on Visual Transformer [126.56860258176324]
Transformerは、主に自己認識機構に基づくディープニューラルネットワークの一種である。
本稿では、これらの視覚変換器モデルについて、異なるタスクで分類し、それらの利点と欠点を分析することでレビューする。
論文 参考訳(メタデータ) (2020-12-23T09:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。