A Review of Intelligent Device Fault Diagnosis Technologies Based on Machine Vision
- URL: http://arxiv.org/abs/2412.08148v1
- Date: Wed, 11 Dec 2024 07:06:53 GMT
- Title: A Review of Intelligent Device Fault Diagnosis Technologies Based on Machine Vision
- Authors: Guiran Liu, Binrong Zhu,
- Abstract summary: The paper details the structure, working principles, and benefits of Transformers, particularly their self-attention mechanism and parallel computation capabilities.
It highlights key Transformer model variants, such as Vision Transformers (ViT) and their extensions, which leverage self-attention to improve accuracy and efficiency in visual tasks.
Despite these advancements, challenges remain, including the reliance on extensive labeled datasets, significant computational demands, and difficulties in deploying models on resource-limited devices.
- Score: 0.0
- License:
- Abstract: This paper provides a comprehensive review of mechanical equipment fault diagnosis methods, focusing on the advancements brought by Transformer-based models. It details the structure, working principles, and benefits of Transformers, particularly their self-attention mechanism and parallel computation capabilities, which have propelled their widespread application in natural language processing and computer vision. The discussion highlights key Transformer model variants, such as Vision Transformers (ViT) and their extensions, which leverage self-attention to improve accuracy and efficiency in visual tasks. Furthermore, the paper examines the application of Transformer-based approaches in intelligent fault diagnosis for mechanical systems, showcasing their superior ability to extract and recognize patterns from complex sensor data for precise fault identification. Despite these advancements, challenges remain, including the reliance on extensive labeled datasets, significant computational demands, and difficulties in deploying models on resource-limited devices. To address these limitations, the paper proposes future research directions, such as developing lightweight Transformer architectures, integrating multimodal data sources, and enhancing adaptability to diverse operational conditions. These efforts aim to further expand the application of Transformer-based methods in mechanical fault diagnosis, making them more robust, efficient, and suitable for real-world industrial environments.
Related papers
- Multi-Scale Transformer Architecture for Accurate Medical Image Classification [4.578375402082224]
This study introduces an AI-driven skin lesion classification algorithm built on an enhanced Transformer architecture.
By integrating a multi-scale feature fusion mechanism and refining the self-attention process, the model effectively extracts both global and local features.
Performance evaluation on the ISIC 2017 dataset demonstrates that the improved Transformer surpasses established AI models.
arXiv Detail & Related papers (2025-02-10T08:22:25Z) - Adventures of Trustworthy Vision-Language Models: A Survey [54.76511683427566]
This paper conducts a thorough examination of vision-language transformers, employing three fundamental principles of responsible AI: Bias, Robustness, and Interpretability.
The primary objective of this paper is to delve into the intricacies and complexities associated with the practical use of transformers, with the overarching goal of advancing our comprehension of how to enhance their reliability and accountability.
arXiv Detail & Related papers (2023-12-07T11:31:20Z) - Efficient Vision Transformer for Accurate Traffic Sign Detection [0.0]
This research paper addresses the challenges associated with traffic sign detection in self-driving vehicles and driver assistance systems.
It introduces the application of the Transformer model, particularly the Vision Transformer variants, to tackle this task.
To enhance the efficiency of the Transformer model, the research proposes a novel strategy that integrates a locality inductive bias and a transformer module.
arXiv Detail & Related papers (2023-11-02T17:44:32Z) - Transformers in Reinforcement Learning: A Survey [7.622978576824539]
Transformers have impacted domains like natural language processing, computer vision, and robotics, where they improve performance compared to other neural networks.
This survey explores how transformers are used in reinforcement learning (RL), where they are seen as a promising solution for addressing challenges such as unstable training, credit assignment, lack of interpretability, and partial observability.
arXiv Detail & Related papers (2023-07-12T07:51:12Z) - Knowledge-Infused Self Attention Transformers [11.008412414253662]
Transformer-based language models have achieved impressive success in various natural language processing tasks.
This paper introduces a systematic method for infusing knowledge into different components of a transformer-based model.
arXiv Detail & Related papers (2023-06-23T13:55:01Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
arXiv Detail & Related papers (2023-06-11T23:13:51Z) - T4PdM: a Deep Neural Network based on the Transformer Architecture for
Fault Diagnosis of Rotating Machinery [0.0]
This paper develops an automatic fault classifier model for predictive maintenance based on a modified version of the Transformer architecture, namely T4PdM.
T4PdM was able to achieve an overall accuracy of 99.98% and 98% for both datasets.
It has demonstrated the superiority of the model in detecting and classifying faults in rotating industrial machinery.
arXiv Detail & Related papers (2022-04-07T20:31:45Z) - AdaViT: Adaptive Vision Transformers for Efficient Image Recognition [78.07924262215181]
We introduce AdaViT, an adaptive framework that learns to derive usage policies on which patches, self-attention heads and transformer blocks to use.
Our method obtains more than 2x improvement on efficiency compared to state-of-the-art vision transformers with only 0.8% drop of accuracy.
arXiv Detail & Related papers (2021-11-30T18:57:02Z) - Blending Anti-Aliasing into Vision Transformer [57.88274087198552]
discontinuous patch-wise tokenization process implicitly introduces jagged artifacts into attention maps.
Aliasing effect occurs when discrete patterns are used to produce high frequency or continuous information, resulting in the indistinguishable distortions.
We propose a plug-and-play Aliasing-Reduction Module(ARM) to alleviate the aforementioned issue.
arXiv Detail & Related papers (2021-10-28T14:30:02Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - A Survey on Visual Transformer [126.56860258176324]
Transformer is a type of deep neural network mainly based on the self-attention mechanism.
In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages.
arXiv Detail & Related papers (2020-12-23T09:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.