Adaptive$^2$: Adaptive Domain Mining for Fine-grained Domain Adaptation Modeling
- URL: http://arxiv.org/abs/2412.08198v1
- Date: Wed, 11 Dec 2024 08:41:41 GMT
- Title: Adaptive$^2$: Adaptive Domain Mining for Fine-grained Domain Adaptation Modeling
- Authors: Wenxuan Sun, Zixuan Yang, Yunli Wang, Zhen Zhang, Zhiqiang Wang, Yu Li, Jian Yang, Yiming Yang, Shiyang Wen, Peng Jiang, Kun Gai,
- Abstract summary: We propose Adaptive$2$, a novel framework that learns domains adaptively using a domain mining module by self-supervision.
Results show that traditional domain adaptation methods with hand-crafted domains perform no better than single-domain models under fair FLOPS conditions.
Adaptive$2$ is the first approach to automatically learn both domain identification and adaptation in online advertising.
- Score: 50.85199749890184
- License:
- Abstract: Advertising systems often face the multi-domain challenge, where data distributions vary significantly across scenarios. Existing domain adaptation methods primarily focus on building domain-adaptive neural networks but often rely on hand-crafted domain information, e.g., advertising placement, which may be sub-optimal. We think that fine-grained "domain" patterns exist that are difficult to hand-craft in online advertisement. Thus, we propose Adaptive$^2$, a novel framework that first learns domains adaptively using a domain mining module by self-supervision and then employs a shared&specific network to model shared and conflicting information. As a practice, we use VQ-VAE as the domain mining module and conduct extensive experiments on public benchmarks. Results show that traditional domain adaptation methods with hand-crafted domains perform no better than single-domain models under fair FLOPS conditions, highlighting the importance of domain definition. In contrast, Adaptive$^2$ outperforms existing approaches, emphasizing the effectiveness of our method and the significance of domain mining. We also deployed Adaptive$^2$ in the live streaming scenario of Kuaishou Advertising System, demonstrating its commercial value and potential for automatic domain identification. To the best of our knowledge, Adaptive$^2$ is the first approach to automatically learn both domain identification and adaptation in online advertising, opening new research directions for this area.
Related papers
- DomainVerse: A Benchmark Towards Real-World Distribution Shifts For
Tuning-Free Adaptive Domain Generalization [27.099706316752254]
We establish a novel dataset DomainVerse for Adaptive Domain Generalization (ADG)
Benefiting from the introduced hierarchical definition of domain shifts, DomainVerse consists of about 0.5 million images from 390 fine-grained realistic domains.
We propose two methods called Domain CLIP and Domain++ CLIP for tuning-free adaptive domain generalization.
arXiv Detail & Related papers (2024-03-05T07:10:25Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Heterogeneous Domain Adaptation with Adversarial Neural Representation
Learning: Experiments on E-Commerce and Cybersecurity [7.748670137746999]
Heterogeneous Adversarial Neural Domain Adaptation (HANDA) is designed to maximize the transferability in heterogeneous environments.
Three experiments were conducted to evaluate the performance against the state-of-the-art HDA methods on major image and text e-commerce benchmarks.
arXiv Detail & Related papers (2022-05-05T16:57:36Z) - Domain Adaptation via Prompt Learning [39.97105851723885]
Unsupervised domain adaption (UDA) aims to adapt models learned from a well-annotated source domain to a target domain.
We introduce a novel prompt learning paradigm for UDA, named Domain Adaptation via Prompt Learning (DAPL)
arXiv Detail & Related papers (2022-02-14T13:25:46Z) - Improving both domain robustness and domain adaptability in machine
translation [69.15496930090403]
We address two problems of domain adaptation in neural machine translation.
First, we want to reach domain robustness, i.e., good quality of both domains from the training data.
Second, we want our systems to be adaptive, i.e., making it possible to finetune systems with just hundreds of in-domain parallel sentences.
arXiv Detail & Related papers (2021-12-15T17:34:59Z) - TADA: Taxonomy Adaptive Domain Adaptation [143.68890984935726]
Traditional domain adaptation addresses the task of adapting a model to a novel target domain under limited supervision.
We introduce the more general taxonomy adaptive domain adaptation problem, allowing for inconsistent between the two domains.
On the label-level, we employ a bilateral mixed sampling strategy to augment the target domain, and a relabelling method to unify and align the label spaces.
arXiv Detail & Related papers (2021-09-10T11:58:56Z) - Self-Adversarial Disentangling for Specific Domain Adaptation [52.1935168534351]
Domain adaptation aims to bridge the domain shifts between the source and target domains.
Recent methods typically do not consider explicit prior knowledge on a specific dimension.
arXiv Detail & Related papers (2021-08-08T02:36:45Z) - Adaptive Methods for Real-World Domain Generalization [32.030688845421594]
In our work, we investigate whether it is possible to leverage domain information from unseen test samples themselves.
We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model.
Our approach achieves state-of-the-art performance on various domain generalization benchmarks.
arXiv Detail & Related papers (2021-03-29T17:44:35Z) - Domain2Vec: Domain Embedding for Unsupervised Domain Adaptation [56.94873619509414]
Conventional unsupervised domain adaptation studies the knowledge transfer between a limited number of domains.
We propose a novel Domain2Vec model to provide vectorial representations of visual domains based on joint learning of feature disentanglement and Gram matrix.
We demonstrate that our embedding is capable of predicting domain similarities that match our intuition about visual relations between different domains.
arXiv Detail & Related papers (2020-07-17T22:05:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.