FLIP: Flow-Centric Generative Planning as General-Purpose Manipulation World Model
- URL: http://arxiv.org/abs/2412.08261v2
- Date: Sun, 16 Feb 2025 03:13:51 GMT
- Title: FLIP: Flow-Centric Generative Planning as General-Purpose Manipulation World Model
- Authors: Chongkai Gao, Haozhuo Zhang, Zhixuan Xu, Zhehao Cai, Lin Shao,
- Abstract summary: We present FLow-centric generative Planning (FLIP), a model-based planning algorithm on visual space.
FLIP is able to synthesize long-horizon plans across objects, robots, and tasks with image flows as the general action representation.
In addition, the synthesized flow and video plans can guide the training of low-level control policies for robot execution.
- Score: 2.9509867426905925
- License:
- Abstract: We aim to develop a model-based planning framework for world models that can be scaled with increasing model and data budgets for general-purpose manipulation tasks with only language and vision inputs. To this end, we present FLow-centric generative Planning (FLIP), a model-based planning algorithm on visual space that features three key modules: 1. a multi-modal flow generation model as the general-purpose action proposal module; 2. a flow-conditioned video generation model as the dynamics module; and 3. a vision-language representation learning model as the value module. Given an initial image and language instruction as the goal, FLIP can progressively search for long-horizon flow and video plans that maximize the discounted return to accomplish the task. FLIP is able to synthesize long-horizon plans across objects, robots, and tasks with image flows as the general action representation, and the dense flow information also provides rich guidance for long-horizon video generation. In addition, the synthesized flow and video plans can guide the training of low-level control policies for robot execution. Experiments on diverse benchmarks demonstrate that FLIP can improve both the success rates and quality of long-horizon video plan synthesis and has the interactive world model property, opening up wider applications for future works.Video demos are on our website: https://nus-lins-lab.github.io/flipweb/.
Related papers
- Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.
To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.
Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - DrivingGPT: Unifying Driving World Modeling and Planning with Multi-modal Autoregressive Transformers [61.92571851411509]
We introduce a multimodal driving language based on interleaved image and action tokens, and develop DrivingGPT to learn joint world modeling and planning.
Our DrivingGPT demonstrates strong performance in both action-conditioned video generation and end-to-end planning, outperforming strong baselines on large-scale nuPlan and NAVSIM benchmarks.
arXiv Detail & Related papers (2024-12-24T18:59:37Z) - iVideoGPT: Interactive VideoGPTs are Scalable World Models [70.02290687442624]
World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making.
This work introduces Interactive VideoGPT, a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens.
iVideoGPT features a novel compressive tokenization technique that efficiently discretizes high-dimensional visual observations.
arXiv Detail & Related papers (2024-05-24T05:29:12Z) - InternVL: Scaling up Vision Foundation Models and Aligning for Generic
Visual-Linguistic Tasks [92.03764152132315]
We design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters.
This model can be broadly applied to and achieve state-of-the-art performance on 32 generic visual-linguistic benchmarks.
It has powerful visual capabilities and can be a good alternative to the ViT-22B.
arXiv Detail & Related papers (2023-12-21T18:59:31Z) - Video Language Planning [137.06052217713054]
Video language planning is an algorithm that consists of a tree search procedure, where we train (i) vision-language models to serve as both policies and value functions, and (ii) text-to-video models as dynamics models.
Our algorithm produces detailed multimodal (video and language) specifications that describe how to complete the final task.
It substantially improves long-horizon task success rates compared to prior methods on both simulated and real robots.
arXiv Detail & Related papers (2023-10-16T17:48:45Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
We propose a foundation model which leverages expert foundation model trained on language, vision and action data individually together to solve long-horizon tasks.
We use a large language model to construct symbolic plans that are grounded in the environment through a large video diffusion model.
Generated video plans are then grounded to visual-motor control, through an inverse dynamics model that infers actions from generated videos.
arXiv Detail & Related papers (2023-09-15T17:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.