論文の概要: Position-aware Guided Point Cloud Completion with CLIP Model
- arxiv url: http://arxiv.org/abs/2412.08271v1
- Date: Wed, 11 Dec 2024 10:43:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:54.000959
- Title: Position-aware Guided Point Cloud Completion with CLIP Model
- Title(参考訳): CLIPモデルを用いた位置認識誘導点クラウド補完
- Authors: Feng Zhou, Qi Zhang, Ju Dai, Lei Li, Qing Fan, Junliang Xing,
- Abstract要約: 本稿では,単一モーダルフレームワークをマルチモーダルフレームワークに拡張するための迅速かつ効率的な手法を提案する。
このアプローチには、欠落部分の空間情報を強化するために設計された位置認識モジュールが組み込まれている。
さらに,既存の単調なクラウド補完データセットに基づいて,PCI-TIとMVP-TIの3重画像コーパスを確立する。
- 参考スコア(独自算出の注目度): 25.084811702682778
- License:
- Abstract: Point cloud completion aims to recover partial geometric and topological shapes caused by equipment defects or limited viewpoints. Current methods either solely rely on the 3D coordinates of the point cloud to complete it or incorporate additional images with well-calibrated intrinsic parameters to guide the geometric estimation of the missing parts. Although these methods have achieved excellent performance by directly predicting the location of complete points, the extracted features lack fine-grained information regarding the location of the missing area. To address this issue, we propose a rapid and efficient method to expand an unimodal framework into a multimodal framework. This approach incorporates a position-aware module designed to enhance the spatial information of the missing parts through a weighted map learning mechanism. In addition, we establish a Point-Text-Image triplet corpus PCI-TI and MVP-TI based on the existing unimodal point cloud completion dataset and use the pre-trained vision-language model CLIP to provide richer detail information for 3D shapes, thereby enhancing performance. Extensive quantitative and qualitative experiments demonstrate that our method outperforms state-of-the-art point cloud completion methods.
- Abstract(参考訳): ポイント雲の完成は、機器の欠陥や限られた視点によって生じる部分的な幾何学的および位相的形状を復元することを目的としている。
現在の手法は、点雲の3次元座標のみに頼って完成させるか、あるいは欠落部分の幾何学的推定を導くために、よく校正された内在的パラメータを付加する。
これらの手法は, 完全点の位置を直接予測することで優れた性能を発揮するが, 抽出された特徴は, 欠落点の位置に関するきめ細かい情報を欠いている。
この問題に対処するために,単調なフレームワークをマルチモーダルなフレームワークに拡張するための,迅速かつ効率的な手法を提案する。
このアプローチは、重み付きマップ学習機構により、欠落部分の空間情報を強化するように設計された位置認識モジュールを組み込んだものである。
さらに,既存の一方向クラウド補完データセットに基づいて,PCI-TIとMVP-TIの3点画像コーパスを構築し,事前学習した視覚言語モデルCLIPを用いて,より詳細な3次元形状情報を提供し,性能の向上を図る。
大規模定量的および定性的な実験により,本手法は最先端のクラウド補完法より優れていることが示された。
関連論文リスト
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
我々は、オブジェクトレベルとカテゴリ固有の幾何学的類似性の両方を効果的に活用するフレームワークであるMAL-SPCを提案する。
私たちのMAL-SPCは3Dの完全な監視を一切必要とせず、各オブジェクトに1つの部分点クラウドを必要とするだけです。
論文 参考訳(メタデータ) (2024-07-13T06:53:39Z) - Point Cloud Completion Guided by Prior Knowledge via Causal Inference [19.935868881427226]
本稿では,ポイントPCと呼ばれる新たなクラウド完了タスクを提案する。
Point-PCはメモリネットワークを用いて形状の先行情報を検索し、因果推論モデルを設計し、欠落した形状情報をフィルタリングする。
ShapeNet-55、PCN、KITTIデータセットの実験結果から、Point-PCは最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-28T16:33:35Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
可変点雲補完法は、局所的な詳細を欠くため、大域的な形状の骨格を生成する傾向がある。
本稿では2つの魅力的な特性を持つ変分フレームワークであるポイントコンプリートネットワーク(VRCNet)を提案する。
VRCNetは、現実世界のポイントクラウドスキャンにおいて、非常に一般化性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-04-18T17:03:20Z) - Prototype-Aware Heterogeneous Task for Point Cloud Completion [35.47134205562422]
ポイントクラウド補完は、部分的なポイントクラウドから元の形状情報を復元することを目的としている。
既存の方法は通常標準形状の完成に成功し、非標準形状の点雲の局所的な詳細を生成できない。
本研究では,クラス内形状表現の助けを借りて,標準形・非標準形を識別する効果的な手法を設計する。
論文 参考訳(メタデータ) (2022-09-05T02:43:06Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - ABD-Net: Attention Based Decomposition Network for 3D Point Cloud
Decomposition [1.3999481573773074]
本稿では,ポイントクラウド分解のためのアテンションベース分解ネットワーク(ABD-Net)を提案する。
点雲の原始形状に基づく注意特徴を用いた3次元オブジェクト分類の性能向上を示す。
論文 参考訳(メタデータ) (2021-07-09T08:39:30Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
我々はPMP-Netと呼ばれる新しいニューラルネットワークを設計し、地球移動体の動作を模倣する。
不完全な入力の各点を移動させ、ポイントクラウドを完結させ、ポイント移動パスの合計距離が最も短くなる。
点レベルの厳密でユニークな対応を学習し、不完全な形状と完全なターゲットの間の詳細なトポロジーと構造的関係を捉えることができる。
論文 参考訳(メタデータ) (2020-12-07T01:34:38Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
本稿では,点雲に基づく3次元オブジェクトの補完と分類手法を提案する。
デコーダの段階では,グローバルな活性化エントロピーの最大化を目的とした新しい演算子である地域畳み込みを提案する。
我々は,オブジェクトの完成度や分類,最先端の精度の達成など,異なる3次元タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2020-08-17T14:32:35Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
本研究では,3Dポイントクラウド補完のためのSkip-Attention Network (SA-Net)を提案する。
まず,不完全点雲の局所構造を効果的に活用するためのスキップアテンション機構を提案する。
第二に、異なる解像度でスキップアテンション機構によって符号化された選択された幾何情報を完全に活用するために、新しい構造保存デコーダを提案する。
論文 参考訳(メタデータ) (2020-05-08T06:23:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。