Local Features Meet Stochastic Anonymization: Revolutionizing Privacy-Preserving Face Recognition for Black-Box Models
- URL: http://arxiv.org/abs/2412.08276v1
- Date: Wed, 11 Dec 2024 10:49:15 GMT
- Title: Local Features Meet Stochastic Anonymization: Revolutionizing Privacy-Preserving Face Recognition for Black-Box Models
- Authors: Yuanwei Liu, Chengyu Jia, Ruqi Xiao, Xuemai Jia, Hui Wei, Kui Jiang, Zheng Wang,
- Abstract summary: The task of privacy-preserving face recognition (PPFR) currently faces two major unsolved challenges.
By disrupting global features while enhancing local features, we achieve effective recognition even in black-box environments.
Our method achieves an average recognition accuracy of 94.21% on black-box models, outperforming existing methods in both privacy protection and anti-reconstruction capabilities.
- Score: 54.88064975480573
- License:
- Abstract: The task of privacy-preserving face recognition (PPFR) currently faces two major unsolved challenges: (1) existing methods are typically effective only on specific face recognition models and struggle to generalize to black-box face recognition models; (2) current methods employ data-driven reversible representation encoding for privacy protection, making them susceptible to adversarial learning and reconstruction of the original image. We observe that face recognition models primarily rely on local features ({e.g., face contour, skin texture, and so on) for identification. Thus, by disrupting global features while enhancing local features, we achieve effective recognition even in black-box environments. Additionally, to prevent adversarial models from learning and reversing the anonymization process, we adopt an adversarial learning-based approach with irreversible stochastic injection to ensure the stochastic nature of the anonymization. Experimental results demonstrate that our method achieves an average recognition accuracy of 94.21\% on black-box models, outperforming existing methods in both privacy protection and anti-reconstruction capabilities.
Related papers
- iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy.
This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform.
arXiv Detail & Related papers (2025-01-08T10:08:09Z) - Privacy-Preserving Face Recognition in Hybrid Frequency-Color Domain [16.05230409730324]
Face image is a sensitive biometric attribute tied to the identity information of each user.
This paper proposes a hybrid frequency-color fusion approach to reduce the input dimensionality of face recognition.
It has around 2.6% to 4.2% higher accuracy than the state-of-the-art in the 1:N verification scenario.
arXiv Detail & Related papers (2024-01-24T11:27:32Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Controllable Inversion of Black-Box Face Recognition Models via
Diffusion [8.620807177029892]
We tackle the task of inverting the latent space of pre-trained face recognition models without full model access.
We show that the conditional diffusion model loss naturally emerges and that we can effectively sample from the inverse distribution.
Our method is the first black-box face recognition model inversion method that offers intuitive control over the generation process.
arXiv Detail & Related papers (2023-03-23T03:02:09Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - RAF: Recursive Adversarial Attacks on Face Recognition Using Extremely
Limited Queries [2.8532545355403123]
Recent successful adversarial attacks on face recognition show that, despite the remarkable progress of face recognition models, they are still far behind the human intelligence for perception and recognition.
In this paper, we propose automatic face warping which needs extremely limited number of queries to fool the target model.
We evaluate the robustness of proposed method in the decision-based black-box attack setting.
arXiv Detail & Related papers (2022-07-04T00:22:45Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.