論文の概要: Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations
- arxiv url: http://arxiv.org/abs/2412.08292v1
- Date: Wed, 11 Dec 2024 11:08:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:41.832179
- Title: Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations
- Title(参考訳): 自己精製拡散サンプリング:パラリアル反復による並列化の実現
- Authors: Nikil Roashan Selvam, Amil Merchant, Stefano Ermon,
- Abstract要約: 自己精製拡散サンプリング(SRDS)は、サンプル品質を維持し、追加の並列計算コストでレイテンシを向上させることができる。
微分方程式の並列時間積分法であるPararealアルゴリズムから着想を得た。
- 参考スコア(独自算出の注目度): 53.180374639531145
- License:
- Abstract: In diffusion models, samples are generated through an iterative refinement process, requiring hundreds of sequential model evaluations. Several recent methods have introduced approximations (fewer discretization steps or distillation) to trade off speed at the cost of sample quality. In contrast, we introduce Self-Refining Diffusion Samplers (SRDS) that retain sample quality and can improve latency at the cost of additional parallel compute. We take inspiration from the Parareal algorithm, a popular numerical method for parallel-in-time integration of differential equations. In SRDS, a quick but rough estimate of a sample is first created and then iteratively refined in parallel through Parareal iterations. SRDS is not only guaranteed to accurately solve the ODE and converge to the serial solution but also benefits from parallelization across the diffusion trajectory, enabling batched inference and pipelining. As we demonstrate for pre-trained diffusion models, the early convergence of this refinement procedure drastically reduces the number of steps required to produce a sample, speeding up generation for instance by up to 1.7x on a 25-step StableDiffusion-v2 benchmark and up to 4.3x on longer trajectories.
- Abstract(参考訳): 拡散モデルでは、サンプルは反復的精錬プロセスを通じて生成され、数百の逐次モデル評価を必要とする。
最近のいくつかの手法は、サンプル品質のコストで速度をトレードオフするために近似(離散化ステップや蒸留)を導入している。
対照的に、サンプル品質を維持し、追加の並列計算コストでレイテンシを向上させる自己精製拡散サンプリング(SRDS)を導入する。
微分方程式の並列時間積分法であるPararealアルゴリズムから着想を得た。
SRDSでは、サンプルの迅速だが大まかな見積が最初に作成され、その後パラレアル反復を通して並列に洗練される。
SRDSは、ODEを正確に解いてシリアルソリューションに収束することが保証されているだけでなく、拡散軌道の並列化による恩恵もあり、バッチ推論とパイプライン化が可能である。
事前学習した拡散モデルについて示すように、この改良手法の早期収束はサンプル生成に必要なステップ数を劇的に減らし、例えば25ステップのStableDiffusion-v2ベンチマークでは最大1.7倍、長い軌道では最大4.3倍に高速化する。
関連論文リスト
- Single-Step Consistent Diffusion Samplers [8.758218443992467]
既存のサンプリングアルゴリズムは通常、高品質なサンプルを作成するために多くの反復的なステップを必要とする。
単一ステップで高忠実度サンプルを生成するために設計された新しいサンプルクラスである,一貫した拡散サンプリングを導入している。
提案手法は,従来の拡散サンプリング装置で要求されるネットワーク評価の1%以下を用いて,高忠実度サンプルが得られることを示す。
論文 参考訳(メタデータ) (2025-02-11T14:25:52Z) - Distributional Diffusion Models with Scoring Rules [83.38210785728994]
拡散モデルは高品質な合成データを生成する。
高品質な出力を生成するには、多くの離散化ステップが必要です。
クリーンデータサンプルの後部エム分布を学習し,サンプル生成を実現することを提案する。
論文 参考訳(メタデータ) (2025-02-04T16:59:03Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity [11.71206628091551]
拡散モデルは、訓練と評価に費用がかかるため、拡散モデルの推論コストを削減することが大きな目標である。
並列サンプリング手法であるHh2024parallelを用いて拡散モデルを高速化する実験的な成功に触発されて,サンプリングプロセスを各ブロック内に並列化可能なPicard繰り返しを持つ$mathcalO(1)$ブロックに分割することを提案する。
我々の結果は、高速で効率的な高次元データサンプリングの可能性に光を当てた。
論文 参考訳(メタデータ) (2024-05-24T23:59:41Z) - Accelerating Parallel Sampling of Diffusion Models [25.347710690711562]
自己回帰過程を並列化することにより拡散モデルのサンプリングを高速化する新しい手法を提案する。
これらの手法を適用したParaTAAは、普遍的でトレーニング不要な並列サンプリングアルゴリズムである。
実験により、ParaTAAは一般的なシーケンシャルサンプリングアルゴリズムで要求される推論ステップを4$sim$14倍に削減できることを示した。
論文 参考訳(メタデータ) (2024-02-15T14:27:58Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
拡散モデルに基づく超解像(SR)法は有望な結果を示す。
しかし、それらの実践的応用は、必要な推論ステップのかなりの数によって妨げられている。
本稿では,SinSRという単一ステップのSR生成を実現するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:21:29Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
拡散モデルは強力な生成モデルであるが、サンプリングが遅い。
そこで本研究では,複数のステップを並列にdenoisingすることで,事前学習した拡散モデルのサンプリングを高速化するParaDiGMSを提案する。
論文 参考訳(メタデータ) (2023-05-25T17:59:42Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。