Video Summarization using Denoising Diffusion Probabilistic Model
- URL: http://arxiv.org/abs/2412.08357v2
- Date: Thu, 12 Dec 2024 15:33:55 GMT
- Title: Video Summarization using Denoising Diffusion Probabilistic Model
- Authors: Zirui Shang, Yubo Zhu, Hongxi Li, Shuo Yang, Xinxiao Wu,
- Abstract summary: We introduce a generative framework for video summarization that learns how to generate summaries from a probability distribution perspective.
Specifically, we propose a novel diffusion summarization method based on the Denoising Diffusion Probabilistic Model (DDPM), which learns the probability distribution of training data through noise prediction.
Our method is more resistant to subjective annotation noise, and is less prone to overfitting the training data than discriminative methods, with strong generalization ability.
- Score: 21.4190413531697
- License:
- Abstract: Video summarization aims to eliminate visual redundancy while retaining key parts of video to construct concise and comprehensive synopses. Most existing methods use discriminative models to predict the importance scores of video frames. However, these methods are susceptible to annotation inconsistency caused by the inherent subjectivity of different annotators when annotating the same video. In this paper, we introduce a generative framework for video summarization that learns how to generate summaries from a probability distribution perspective, effectively reducing the interference of subjective annotation noise. Specifically, we propose a novel diffusion summarization method based on the Denoising Diffusion Probabilistic Model (DDPM), which learns the probability distribution of training data through noise prediction, and generates summaries by iterative denoising. Our method is more resistant to subjective annotation noise, and is less prone to overfitting the training data than discriminative methods, with strong generalization ability. Moreover, to facilitate training DDPM with limited data, we employ an unsupervised video summarization model to implement the earlier denoising process. Extensive experiments on various datasets (TVSum, SumMe, and FPVSum) demonstrate the effectiveness of our method.
Related papers
- Video DataFlywheel: Resolving the Impossible Data Trinity in Video-Language Understanding [61.89781979702939]
This study quantitatively reveals an "impossible trinity" among data quantity, diversity, and quality in pre-training datasets.
Recent efforts seek to refine large-scale, diverse ASR datasets compromised by low quality through synthetic annotations.
We introduce the Video DataFlywheel framework, which iteratively refines video annotations with improved noise control methods.
arXiv Detail & Related papers (2024-09-29T03:33:35Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance.
We propose a unifying framework generalising this approach to a wide class of spaces and leading to an original extension of score matching.
arXiv Detail & Related papers (2022-11-07T14:34:27Z) - MANet: Improving Video Denoising with a Multi-Alignment Network [72.93429911044903]
We present a multi-alignment network, which generates multiple flow proposals followed by attention-based averaging.
Experiments on a large-scale video dataset demonstrate that our method improves the denoising baseline model by 0.2dB.
arXiv Detail & Related papers (2022-02-20T00:52:07Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
Diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain.
We propose a faster and cheaper approach that adds noise not until the data become pure random noise.
We show that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior.
arXiv Detail & Related papers (2022-02-19T20:18:49Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.