Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders
- URL: http://arxiv.org/abs/2202.09671v4
- Date: Thu, 7 Sep 2023 14:08:07 GMT
- Title: Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders
- Authors: Huangjie Zheng, Pengcheng He, Weizhu Chen, Mingyuan Zhou
- Abstract summary: Diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain.
We propose a faster and cheaper approach that adds noise not until the data become pure random noise.
We show that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior.
- Score: 137.1060633388405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Employing a forward diffusion chain to gradually map the data to a noise
distribution, diffusion-based generative models learn how to generate the data
by inferring a reverse diffusion chain. However, this approach is slow and
costly because it needs many forward and reverse steps. We propose a faster and
cheaper approach that adds noise not until the data become pure random noise,
but until they reach a hidden noisy data distribution that we can confidently
learn. Then, we use fewer reverse steps to generate data by starting from this
hidden distribution that is made similar to the noisy data. We reveal that the
proposed model can be cast as an adversarial auto-encoder empowered by both the
diffusion process and a learnable implicit prior. Experimental results show
even with a significantly smaller number of reverse diffusion steps, the
proposed truncated diffusion probabilistic models can provide consistent
improvements over the non-truncated ones in terms of performance in both
unconditional and text-guided image generations.
Related papers
- Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
Diffusion Forcing is a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels.
We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens.
arXiv Detail & Related papers (2024-07-01T15:43:25Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data.
We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data.
arXiv Detail & Related papers (2024-03-20T14:22:12Z) - Diffusion Models with Deterministic Normalizing Flow Priors [23.212848643552395]
We propose DiNof ($textbfDi$ffusion with $textbfNo$rmalizing $textbff$low priors), a technique that makes use of normalizing flows and diffusion models.
Experiments on standard image generation datasets demonstrate the advantage of the proposed method over existing approaches.
arXiv Detail & Related papers (2023-09-03T21:26:56Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Data Augmentation for Seizure Prediction with Generative Diffusion Model [26.967247641926814]
Seizure prediction is of great importance to improve the life of patients.
The severe imbalance problem between preictal and interictal data still poses a great challenge.
Data augmentation is an intuitive way to solve this problem.
We propose a novel data augmentation method with diffusion model called DiffEEG.
arXiv Detail & Related papers (2023-06-14T05:44:53Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models [20.315727650065007]
Denoising diffusion models are a class of generative models which have recently achieved state-of-the-art results across many domains.
We leverage known connections to control akin to the F"ollmer drift to extend established neural network approximation results for the F"ollmer drift to denoising diffusion models and samplers.
arXiv Detail & Related papers (2023-05-16T16:56:19Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - Diffusion-GAN: Training GANs with Diffusion [135.24433011977874]
Generative adversarial networks (GANs) are challenging to train stably.
We propose Diffusion-GAN, a novel GAN framework that leverages a forward diffusion chain to generate instance noise.
We show that Diffusion-GAN can produce more realistic images with higher stability and data efficiency than state-of-the-art GANs.
arXiv Detail & Related papers (2022-06-05T20:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.