論文の概要: Grasp Diffusion Network: Learning Grasp Generators from Partial Point Clouds with Diffusion Models in SO(3)xR3
- arxiv url: http://arxiv.org/abs/2412.08398v1
- Date: Wed, 11 Dec 2024 14:17:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:57.782665
- Title: Grasp Diffusion Network: Learning Grasp Generators from Partial Point Clouds with Diffusion Models in SO(3)xR3
- Title(参考訳): Grasp Diffusion Network:SO(3)xR3における拡散モデルによる部分点雲からのGraspジェネレータの学習
- Authors: Joao Carvalho, An T. Le, Philipp Jahr, Qiao Sun, Julen Urain, Dorothea Koert, Jan Peters,
- Abstract要約: シミュレーションを利用して、オブジェクトのペアのデータセットを作成し、ポーズを把握します。
次に、デプロイ中に素早く起動できる条件生成モデルを学びます。
シミュレーションと実世界の実験で、我々は90%以上の成功率でいくつかのオブジェクトを把握できることを示した。
- 参考スコア(独自算出の注目度): 15.011589108235702
- License:
- Abstract: Grasping objects successfully from a single-view camera is crucial in many robot manipulation tasks. An approach to solve this problem is to leverage simulation to create large datasets of pairs of objects and grasp poses, and then learn a conditional generative model that can be prompted quickly during deployment. However, the grasp pose data is highly multimodal since there are several ways to grasp an object. Hence, in this work, we learn a grasp generative model with diffusion models to sample candidate grasp poses given a partial point cloud of an object. A novel aspect of our method is to consider diffusion in the manifold space of rotations and to propose a collision-avoidance cost guidance to improve the grasp success rate during inference. To accelerate grasp sampling we use recent techniques from the diffusion literature to achieve faster inference times. We show in simulation and real-world experiments that our approach can grasp several objects from raw depth images with $90\%$ success rate and benchmark it against several baselines.
- Abstract(参考訳): 単一視点カメラからオブジェクトをグラッピングすることは、多くのロボット操作タスクにおいて不可欠である。
この問題を解決するためのアプローチは、シミュレーションを活用して、オブジェクトのペアの大きなデータセットを作成し、ポーズを把握し、デプロイ中に素早くトリガーできる条件付き生成モデルを学ぶことである。
しかし、グリップポーズデータは、オブジェクトをつかむ方法がいくつかあるため、非常にマルチモーダルである。
そこで,本研究では,物体の部分点雲が与えられた候補のグリップポーズをサンプリングするために,拡散モデルを用いたグリップ生成モデルを学習する。
提案手法の新たな側面は,回転の多様体空間における拡散を考慮し,衝突回避コストガイダンスを提案することである。
近年の拡散文学の手法を用いて,より高速な推測時間を実現する。
シミュレーションおよび実世界の実験において、本手法は生の深度画像から90 %の成功率で複数のオブジェクトを把握し、複数のベースラインに対してベンチマークすることができることを示す。
関連論文リスト
- Iterative Object Count Optimization for Text-to-image Diffusion Models [59.03672816121209]
画像とテキストのペアから学ぶ現在のモデルは、本質的にカウントに苦慮している。
本稿では,物体のポテンシャルを集計する計数モデルから得られた計数損失に基づいて生成画像の最適化を提案する。
様々なオブジェクトの生成を評価し,精度を大幅に向上させた。
論文 参考訳(メタデータ) (2024-08-21T15:51:46Z) - Sampling 3D Gaussian Scenes in Seconds with Latent Diffusion Models [3.9373541926236766]
本稿では,2次元画像データのみを用いて3次元シーン上での潜時拡散モデルを提案する。
我々は,スクラッチからでもスパースインプットビューからでも,わずか0.2秒で3Dシーンを生成することができることを示す。
論文 参考訳(メタデータ) (2024-06-18T23:14:29Z) - Fast LiDAR Upsampling using Conditional Diffusion Models [1.3709133749179265]
既存の手法は拡散モデルを用いて高忠実度で洗練されたLiDARデータを生成する可能性を示している。
高速かつ高品質な3次元シーンポイント雲のスパース・ツー・デンスアップサンプリングのための条件拡散モデルに基づく新しいアプローチを提案する。
本手法では,条件付き塗装マスクを用いて訓練した拡散確率モデルを用いて,画像補完タスクの性能向上を図っている。
論文 参考訳(メタデータ) (2024-05-08T08:38:28Z) - Towards Robust 3D Pose Transfer with Adversarial Learning [36.351835328908116]
望ましいポーズをターゲットメッシュに転送することを目的とした3Dポーズ転送は、最も困難な3D生成タスクの1つである。
以前の試みは、よく定義されたパラメトリックな人体モデルや骨格関節を駆動するポーズ源として頼っていた。
3次元外部プレゼンテーション(ポーズ)を効果的に学習するカスタマイズされたMAEである3D-PoseMAEを提案する。
論文 参考訳(メタデータ) (2024-04-02T19:03:39Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
我々は,閉鎖語彙データセットのトレーニングモデルによって伝統的に解決されるイメージセグメンテーションの課題に焦点をあてる。
我々は、ゼロショットのオープン語彙セグメンテーションのために、異なる、比較的小さなオープンソース基盤モデルを活用している。
当社のアプローチ(別名FreeSeg-Diff)は、トレーニングに依存しないもので、Pascal VOCとCOCOデータセットの両方で多くのトレーニングベースのアプローチより優れています。
論文 参考訳(メタデータ) (2024-03-29T10:38:25Z) - Diff-DOPE: Differentiable Deep Object Pose Estimation [29.703385848843414]
Diff-DOPE, 画像入力を行う6-DoFポーズ精細機, オブジェクトの3次元テクスチャモデル, オブジェクトの初期ポーズを紹介する。
この方法は、画像とモデルの投影の間の視覚的エラーを最小限に抑えるために、オブジェクトのポーズを更新するために微分可能なレンダリングを使用する。
このシンプルで効果的なアイデアは、ポーズ推定データセットで最先端の結果を得ることができることを示す。
論文 参考訳(メタデータ) (2023-09-30T18:52:57Z) - Diffusion-based 3D Object Detection with Random Boxes [58.43022365393569]
既存のアンカーベースの3D検出方法は、アンカーの実証的な設定に依存しており、アルゴリズムはエレガンスを欠いている。
提案するDiff3Detは,検出ボックスを生成対象として考慮し,拡散モデルから3次元オブジェクト検出のための提案生成へ移行する。
推論段階では、モデルは予測結果にランダムボックスのセットを徐々に洗練する。
論文 参考訳(メタデータ) (2023-09-05T08:49:53Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
カモフラーゲ型物体検出(COD)は、カモフラーゲ型物体とその周囲の類似性が高いため、コンピュータビジョンにおいて難しい課題である。
本研究では,CODを拡散モデルを利用した条件付きマスク生成タスクとして扱う新しいパラダイムを提案する。
カモ拡散(CamoDiffusion)と呼ばれる本手法では,拡散モデルのデノナイズプロセスを用いてマスクの雑音を反復的に低減する。
論文 参考訳(メタデータ) (2023-05-29T07:49:44Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
少数ショットコモンオブジェクトローカライゼーション(COL)と少数ショット弱監視オブジェクト検出(WSOD)のための確率論的多重インスタンス学習手法を提案する。
本モデルでは,新しいオブジェクトの分布を同時に学習し,期待-最大化ステップにより局所化する。
提案手法は, 単純であるにもかかわらず, 少数のCOLとWSOD, 大規模WSODタスクにおいて, 高いベースラインを達成できることを示す。
論文 参考訳(メタデータ) (2021-03-25T22:34:16Z) - Flow-based Generative Models for Learning Manifold to Manifold Mappings [39.60406116984869]
本稿では,フローベース生成モデルに類似した,多様体値データに対する可逆層を3種類導入する。
配向分布関数の分野の脳画像を確実にかつ正確に再構築できる有望な結果を示します。
論文 参考訳(メタデータ) (2020-12-18T02:19:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。