論文の概要: CC-Diff: Enhancing Contextual Coherence in Remote Sensing Image Synthesis
- arxiv url: http://arxiv.org/abs/2412.08464v2
- Date: Mon, 23 Dec 2024 12:23:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 19:20:52.805395
- Title: CC-Diff: Enhancing Contextual Coherence in Remote Sensing Image Synthesis
- Title(参考訳): CC-Diff:リモートセンシング画像合成におけるコンテキストコヒーレンス向上
- Authors: Mu Zhang, Yunfan Liu, Yue Liu, Hongtian Yu, Qixiang Ye,
- Abstract要約: 本稿では,拡張コンテキストコヒーレンスを用いた拡散モデルに基づくRS画像生成手法であるCC-Diffを紹介する。
空間的相互依存を捉えるために,合成した前景のインスタンスに背景生成を条件付けるシーケンシャルパイプラインを提案する。
実験により、CC-Diffは視覚的忠実度、意味的精度、位置精度において最先端の手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 42.09199178897688
- License:
- Abstract: Accurately depicting real-world landscapes in remote sensing (RS) images requires precise alignment between objects and their environment. However, most existing synthesis methods for natural images prioritize foreground control, often reducing the background to plain textures. This neglects the interaction between foreground and background, which can lead to incoherence in RS scenarios. In this paper, we introduce CC-Diff, a Diffusion Model-based approach for RS image generation with enhanced Context Coherence. To capture spatial interdependence, we propose a sequential pipeline where background generation is conditioned on synthesized foreground instances. Distinct learnable queries are also employed to model both the complex background texture and its semantic relation to the foreground. Extensive experiments demonstrate that CC-Diff outperforms state-of-the-art methods in visual fidelity, semantic accuracy, and positional precision, excelling in both RS and natural image domains. CC-Diff also shows strong trainability, improving detection accuracy by 2.04 mAP on DOTA and 2.25 mAP on the COCO benchmark.
- Abstract(参考訳): リモートセンシング(RS)画像における現実世界の風景の正確な描写には、オブジェクトとその環境の正確なアライメントが必要である。
しかし、既存の自然画像合成手法のほとんどは前景制御を優先し、背景を平らなテクスチャに還元する。
これはフォアグラウンドとバックグラウンドの相互作用を無視し、RSシナリオにおける一貫性を損なう可能性がある。
本稿では,拡張コンテキストコヒーレンスを用いた拡散モデルに基づくRS画像生成手法であるCC-Diffを紹介する。
空間的相互依存を捉えるために,合成した前景のインスタンスに背景生成を条件付けるシーケンシャルパイプラインを提案する。
特定の学習可能なクエリも、複雑な背景テクスチャと、前景とのセマンティックな関係の両方をモデル化するために使用される。
CC-Diffは視覚的忠実度、意味的精度、位置精度において最先端の手法より優れており、RS領域と自然画像領域の両方で優れていた。
CC-Diffは訓練性も強く、DOTAでは2.04 mAP、COCOベンチマークでは2.25 mAPの検出精度が向上した。
関連論文リスト
- Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval [43.47770490199544]
Composed Image Retrieval (CIR)は、画像とキャプションで構成されたクエリを使って画像を取得する複雑なタスクである。
Slerp(Spherical Linear Interpolation)を用いて画像とテキストを直接マージする新しいZS-CIR手法を提案する。
また,テキストエンコーダを固定しながら画像エンコーダを微調整するText-Anchored-Tuning (TAT)を導入する。
論文 参考訳(メタデータ) (2024-05-01T15:19:54Z) - Improving Diffusion-Based Image Synthesis with Context Prediction [49.186366441954846]
既存の拡散モデルは、主に、劣化した画像から空間軸に沿って画素幅または特徴幅の制約で入力画像を再構成しようとする。
文脈予測を用いて拡散に基づく画像合成を改善するためのConPreDiffを提案する。
我々のConPreDiffは従来手法を一貫して上回り、ゼロショットFIDスコア6.21で、MS-COCO上で新たなSOTAテキスト・画像生成結果を達成する。
論文 参考訳(メタデータ) (2024-01-04T01:10:56Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - ResiDualGAN: Resize-Residual DualGAN for Cross-Domain Remote Sensing
Images Semantic Segmentation [15.177834801688979]
アノテーション付きデータセットで事前訓練されたリモートセンシング(RS)画像のセマンティックセグメンテーションモデルの性能は、ドメインギャップのため、他のアノテーションなしデータセットでテストすると大幅に低下する。
画素レベルのドメインギャップを最小限に抑えるために、DualGANなどの逆生成法が未ペア画像から画像への変換に利用される。
本稿では,RS画像の変換においてResiDualGANを提案する。
論文 参考訳(メタデータ) (2022-01-27T13:56:54Z) - Spatial-Separated Curve Rendering Network for Efficient and
High-Resolution Image Harmonization [59.19214040221055]
本稿では,空間分離型曲線描画ネットワーク(S$2$CRNet)を提案する。
提案手法は従来の手法と比較して90%以上のパラメータを減少させる。
提案手法は,既存の手法よりも10ドル以上高速な高解像度画像をリアルタイムにスムーズに処理することができる。
論文 参考訳(メタデータ) (2021-09-13T07:20:16Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
形状とSVBRDFを段階的に推定した新しいディープラーニングアーキテクチャを提案する。
ドメインランダム化された幾何学と現実的な材料を用いた大規模合成学習データセットを作成する。
合成データセットと実世界のデータセットの両方の実験により、合成データセットでトレーニングされたネットワークが、実世界の画像に対してうまく一般化できることが示されている。
論文 参考訳(メタデータ) (2020-04-01T12:56:13Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
深層ネットワークに基づく弱い教師付きセマンティックマッチングに対処する。
本研究では,背景乱れの影響を抑えるために,前景領域を明示的に推定する。
複数の画像にまたがって予測変換を強制し、幾何的に可視かつ一貫したサイクル一貫性の損失を発生させる。
論文 参考訳(メタデータ) (2020-03-31T22:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。