論文の概要: InvDiff: Invariant Guidance for Bias Mitigation in Diffusion Models
- arxiv url: http://arxiv.org/abs/2412.08480v1
- Date: Wed, 11 Dec 2024 15:47:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:11.791848
- Title: InvDiff: Invariant Guidance for Bias Mitigation in Diffusion Models
- Title(参考訳): InvDiff:拡散モデルにおけるバイアス軽減のための不変ガイダンス
- Authors: Min Hou, Yueying Wu, Chang Xu, Yu-Hao Huang, Chenxi Bai, Le Wu, Jiang Bian,
- Abstract要約: 拡散モデルは、非常にデータ駆動であり、現実世界のデータに存在する不均衡とバイアスを継承する傾向がある。
拡散誘導のための不変意味情報学習を目的としたフレームワークInvDiffを提案する。
InvDiffは、画像生成の品質を維持しながら、バイアスを効果的に低減する。
- 参考スコア(独自算出の注目度): 28.51460282167433
- License:
- Abstract: As one of the most successful generative models, diffusion models have demonstrated remarkable efficacy in synthesizing high-quality images. These models learn the underlying high-dimensional data distribution in an unsupervised manner. Despite their success, diffusion models are highly data-driven and prone to inheriting the imbalances and biases present in real-world data. Some studies have attempted to address these issues by designing text prompts for known biases or using bias labels to construct unbiased data. While these methods have shown improved results, real-world scenarios often contain various unknown biases, and obtaining bias labels is particularly challenging. In this paper, we emphasize the necessity of mitigating bias in pre-trained diffusion models without relying on auxiliary bias annotations. To tackle this problem, we propose a framework, InvDiff, which aims to learn invariant semantic information for diffusion guidance. Specifically, we propose identifying underlying biases in the training data and designing a novel debiasing training objective. Then, we employ a lightweight trainable module that automatically preserves invariant semantic information and uses it to guide the diffusion model's sampling process toward unbiased outcomes simultaneously. Notably, we only need to learn a small number of parameters in the lightweight learnable module without altering the pre-trained diffusion model. Furthermore, we provide a theoretical guarantee that the implementation of InvDiff is equivalent to reducing the error upper bound of generalization. Extensive experimental results on three publicly available benchmarks demonstrate that InvDiff effectively reduces biases while maintaining the quality of image generation. Our code is available at https://github.com/Hundredl/InvDiff.
- Abstract(参考訳): 最も成功した生成モデルの一つとして、拡散モデルは高品質な画像の合成において顕著な効果を示した。
これらのモデルは、教師なしの方法で基礎となる高次元データ分布を学習する。
彼らの成功にもかかわらず、拡散モデルは高度にデータ駆動であり、現実世界のデータに存在する不均衡とバイアスを継承する傾向がある。
いくつかの研究では、既知のバイアスのためのテキストプロンプトを設計したり、バイアスラベルを使ってバイアスのないデータを構築したりすることで、これらの問題に対処しようとしている。
これらの手法は改善された結果を示しているが、現実のシナリオは様々な未知のバイアスを含むことが多く、バイアスラベルを取得することは特に困難である。
本稿では,予備バイアスアノテーションに頼ることなく,事前学習した拡散モデルにおけるバイアス緩和の必要性を強調する。
この問題に対処するため,拡散誘導のための不変意味情報学習を目的としたフレームワークInvDiffを提案する。
具体的には、トレーニングデータの基盤となるバイアスを特定し、新しいバイアス学習目標を設計することを提案する。
次に、不変意味情報を自動保存する軽量なトレーニング可能なモジュールを用いて、拡散モデルのサンプリングプロセスをバイアスのない結果へ同時に誘導する。
特に、事前訓練された拡散モデルを変更することなく、軽量学習可能なモジュールで少数のパラメータを学習するしかありません。
さらに、InvDiffの実装が一般化の誤差上限を下げることに等しいという理論的保証を提供する。
InvDiffは画像生成の品質を維持しながら、バイアスを効果的に低減することを示した。
私たちのコードはhttps://github.com/Hundredl/InvDiff.orgから入手可能です。
関連論文リスト
- CosFairNet:A Parameter-Space based Approach for Bias Free Learning [1.9116784879310025]
バイアス付きデータに基づいてトレーニングされたディープニューラルネットワークは、意図しない推論ルールを不注意に学習することが多い。
本稿では,モデルのパラメータ空間内で直接バイアスに対処する新しい手法を提案する。
各種合成および実世界のデータセットにおいて,分類精度の向上と偏りの低減効果を示す。
論文 参考訳(メタデータ) (2024-10-19T13:06:40Z) - DiffInject: Revisiting Debias via Synthetic Data Generation using Diffusion-based Style Injection [9.801159950963306]
DiffInject(ディフインジェクション)は,事前学習した拡散モデルを用いて,合成バイアス競合サンプルを増強する強力な手法である。
私たちのフレームワークでは、バイアスタイプやラベル付けに関する明確な知識は必要ありません。
論文 参考訳(メタデータ) (2024-06-10T09:45:38Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - Unmasking Bias in Diffusion Model Training [40.90066994983719]
拡散モデルが画像生成の主流のアプローチとして登場した。
トレーニングの収束が遅く、サンプリングのカラーシフトの問題に悩まされている。
本稿では,これらの障害は,既定のトレーニングパラダイムに固有のバイアスや準最適性に大きく起因していると考えられる。
論文 参考訳(メタデータ) (2023-10-12T16:04:41Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
本稿では,既存のバイアスモデルがトレーニングデータにおけるバイアス強調サンプルに過度に適合していることを明らかにする実験的検討を行った。
本研究では、バイアスモデルとターゲットモデルを異なる戦略で訓練するEchoesという、単純で効果的な手法を提案する。
提案手法は,既存の合成データセットと実世界のデータセットのベースラインと比較して,優れたデバイアス化結果が得られる。
論文 参考訳(メタデータ) (2023-05-06T13:13:18Z) - Class-Balancing Diffusion Models [57.38599989220613]
クラスバランシング拡散モデル(CBDM)は、分散調整正規化器をソリューションとして訓練する。
提案手法は,CIFAR100/CIFAR100LTデータセットで生成結果をベンチマークし,下流認識タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-30T20:00:14Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。