AltFS: Agency-light Feature Selection with Large Language Models in Deep Recommender Systems
- URL: http://arxiv.org/abs/2412.08516v1
- Date: Wed, 11 Dec 2024 16:28:18 GMT
- Title: AltFS: Agency-light Feature Selection with Large Language Models in Deep Recommender Systems
- Authors: Pengyue Jia, Zhaocheng Du, Yichao Wang, Xiangyu Zhao, Xiaopeng Li, Yuhao Wang, Qidong Liu, Huifeng Guo, Ruiming Tang,
- Abstract summary: We propose AltFS, an Agency-light Feature Selection method for deep recommender systems.
In this paper, we propose AltFS, an Agency-light Feature Selection method for deep recommender systems.
- Score: 43.279297619296635
- License:
- Abstract: Feature selection is crucial in recommender systems for improving model efficiency and predictive performance. Traditional methods rely on agency models, such as decision trees or neural networks, to estimate feature importance. However, this approach is inherently limited, as the agency models may fail to learn effectively in all scenarios due to suboptimal training conditions (e.g., feature collinearity, high-dimensional sparsity, and data insufficiency). In this paper, we propose AltFS, an Agency-light Feature Selection method for deep recommender systems. AltFS integrates semantic reasoning from Large Language Models (LLMs) with task-specific learning from agency models. Initially, LLMs will generate a semantic ranking of feature importance, which is then refined by an agency model, combining world knowledge with task-specific insights. Extensive experiments on three public datasets from real-world recommender platforms demonstrate the effectiveness of AltFS. Our code is publicly available for reproducibility.
Related papers
- Reviving The Classics: Active Reward Modeling in Large Language Model Alignment [7.041595238178957]
Building neural reward models from human preferences is a pivotal component in reinforcement learning.
Given the scarcity and high cost of human annotation, how to select the most informative pairs to annotate is an essential yet challenging open problem.
We propose the Fisher information-based selection strategies, adapt theories from the classical experimental design literature, and apply them to the final linear layer of the deep neural network-based reward modeling tasks.
arXiv Detail & Related papers (2025-02-04T18:47:11Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Active Preference Learning for Large Language Models [12.093302163058436]
We develop an active learning strategy for DPO to make better use of preference labels.
We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model.
We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
arXiv Detail & Related papers (2024-02-12T23:09:00Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Self-Feature Regularization: Self-Feature Distillation Without Teacher
Models [0.0]
Self-Feature Regularization(SFR) is proposed, which uses features in the deep layers to supervise feature learning in the shallow layers.
We firstly use generalization-l2 loss to match local features and a many-to-one approach to distill more intensively in the channel dimension.
arXiv Detail & Related papers (2021-03-12T15:29:00Z) - Feature Selection Methods for Uplift Modeling and Heterogeneous
Treatment Effect [1.349645012479288]
Uplift modeling is a causal learning technique that estimates subgroup-level treatment effects.
Traditional methods for doing feature selection are not fit for the task.
We introduce a set of feature selection methods explicitly designed for uplift modeling.
arXiv Detail & Related papers (2020-05-05T00:28:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.