Learning to Decouple the Lights for 3D Face Texture Modeling
- URL: http://arxiv.org/abs/2412.08524v1
- Date: Wed, 11 Dec 2024 16:36:45 GMT
- Title: Learning to Decouple the Lights for 3D Face Texture Modeling
- Authors: Tianxin Huang, Zhenyu Zhang, Ying Tai, Gim Hee Lee,
- Abstract summary: We introduce a novel approach to model 3D facial textures under such unnatural illumination.
Our framework learns to imitate the unnatural illumination as a composition of multiple separate light conditions.
According to experiments on both single images and video sequences, we demonstrate the effectiveness of our approach.
- Score: 71.67854540658472
- License:
- Abstract: Existing research has made impressive strides in reconstructing human facial shapes and textures from images with well-illuminated faces and minimal external occlusions. Nevertheless, it remains challenging to recover accurate facial textures from scenarios with complicated illumination affected by external occlusions, e.g. a face that is partially obscured by items such as a hat. Existing works based on the assumption of single and uniform illumination cannot correctly process these data. In this work, we introduce a novel approach to model 3D facial textures under such unnatural illumination. Instead of assuming single illumination, our framework learns to imitate the unnatural illumination as a composition of multiple separate light conditions combined with learned neural representations, named Light Decoupling. According to experiments on both single images and video sequences, we demonstrate the effectiveness of our approach in modeling facial textures under challenging illumination affected by occlusions. Please check https://tianxinhuang.github.io/projects/Deface for our videos and codes.
Related papers
- IllumiNeRF: 3D Relighting Without Inverse Rendering [25.642960820693947]
We show how to relight each input image using an image diffusion model conditioned on target environment lighting and estimated object geometry.
We reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting.
We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks.
arXiv Detail & Related papers (2024-06-10T17:59:59Z) - LumiGAN: Unconditional Generation of Relightable 3D Human Faces [50.32937196797716]
We introduce LumiGAN, an unconditional Geneversarative Adrial Network (GAN) for 3D human faces with a physically based lighting module.
LumiGAN can create realistic shadow effects using an efficient visibility formulation that is learned in a self-supervised manner.
In addition to relightability, we demonstrate significantly improved geometry generation compared to state-of-the-art non-relightable 3D GANs.
arXiv Detail & Related papers (2023-04-25T21:03:20Z) - FaceLit: Neural 3D Relightable Faces [28.0806453092185]
FaceLit is capable of generating a 3D face that can be rendered at various user-defined lighting conditions and views.
We show state-of-the-art photorealism among 3D aware GANs on FFHQ dataset achieving an FID score of 3.5.
arXiv Detail & Related papers (2023-03-27T17:59:10Z) - Geometry-aware Single-image Full-body Human Relighting [37.381122678376805]
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting.
Previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows.
Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions.
arXiv Detail & Related papers (2022-07-11T10:21:02Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks.
We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions.
arXiv Detail & Related papers (2022-05-19T06:44:37Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - Self-supervised High-fidelity and Re-renderable 3D Facial Reconstruction
from a Single Image [19.0074836183624]
We propose a novel self-supervised learning framework for reconstructing high-quality 3D faces from single-view images in-the-wild.
Our framework substantially outperforms state-of-the-art approaches in both qualitative and quantitative comparisons.
arXiv Detail & Related papers (2021-11-16T08:10:24Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z) - Face Forgery Detection by 3D Decomposition [72.22610063489248]
We consider a face image as the production of the intervention of the underlying 3D geometry and the lighting environment.
By disentangling the face image into 3D shape, common texture, identity texture, ambient light, and direct light, we find the devil lies in the direct light and the identity texture.
We propose to utilize facial detail, which is the combination of direct light and identity texture, as the clue to detect the subtle forgery patterns.
arXiv Detail & Related papers (2020-11-19T09:25:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.