Continual Learning for Encoder-only Language Models via a Discrete Key-Value Bottleneck
- URL: http://arxiv.org/abs/2412.08528v1
- Date: Wed, 11 Dec 2024 16:38:34 GMT
- Title: Continual Learning for Encoder-only Language Models via a Discrete Key-Value Bottleneck
- Authors: Andor Diera, Lukas Galke, Fabian Karl, Ansgar Scherp,
- Abstract summary: We introduce a discrete key-value bottleneck for encoder-only language models.<n>Inspired by the success of a discrete key-value bottleneck in vision, we address new and NLP-specific challenges.
- Score: 6.137272725645159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning remains challenging across various natural language understanding tasks. When models are updated with new training data, they risk catastrophic forgetting of prior knowledge. In the present work, we introduce a discrete key-value bottleneck for encoder-only language models, allowing for efficient continual learning by requiring only localized updates. Inspired by the success of a discrete key-value bottleneck in vision, we address new and NLP-specific challenges. We experiment with different bottleneck architectures to find the most suitable variants regarding language, and present a generic discrete key initialization technique for NLP that is task independent. We evaluate the discrete key-value bottleneck in four continual learning NLP scenarios and demonstrate that it alleviates catastrophic forgetting. We showcase that it offers competitive performance to other popular continual learning methods, with lower computational costs.
Related papers
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [92.99416966226724]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.<n>We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.<n>Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.
A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.
A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.
An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Continual Contrastive Spoken Language Understanding [33.09005399967931]
COCONUT is a class-incremental learning (CIL) method that relies on the combination of experience replay and contrastive learning.
We show that COCONUT can be combined with methods that operate on the decoder side of the model, resulting in further metrics improvements.
arXiv Detail & Related papers (2023-10-04T10:09:12Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - Deep Active Learning Using Barlow Twins [0.0]
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images.
The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool.
We propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets.
arXiv Detail & Related papers (2022-12-30T12:39:55Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Discrete Key-Value Bottleneck [95.61236311369821]
Deep neural networks perform well on classification tasks where data streams are i.i.d. and labeled data is abundant.
One powerful approach that has addressed this challenge involves pre-training of large encoders on volumes of readily available data, followed by task-specific tuning.
Given a new task, however, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks.
We propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable key-value codes.
arXiv Detail & Related papers (2022-07-22T17:52:30Z) - Detecting Requirements Smells With Deep Learning: Experiences,
Challenges and Future Work [9.44316959798363]
This work aims to improve the previous work by creating a manually labeled dataset and using ensemble learning, Deep Learning (DL), and techniques such as word embeddings and transfer learning to overcome the generalization problem.
The current findings show that the dataset is unbalanced and which class examples should be added more.
arXiv Detail & Related papers (2021-08-06T12:45:15Z) - Generalized Zero-Shot Learning using Multimodal Variational Auto-Encoder
with Semantic Concepts [0.9054540533394924]
Recent techniques try to learn a cross-modal mapping between the semantic space and the image space.
We propose a Multimodal Variational Auto-Encoder (M-VAE) which can learn the shared latent space of image features and the semantic space.
Our results show that our proposed model outperforms the current state-of-the-art approaches for generalized zero-shot learning.
arXiv Detail & Related papers (2021-06-26T20:08:37Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
Cross-lingual NER transfers knowledge from rich-resource language to languages with low resources.
Existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages.
We develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning.
arXiv Detail & Related papers (2021-06-01T05:46:22Z) - Continual Learning From Unlabeled Data Via Deep Clustering [7.704949298975352]
Continual learning aims to learn new tasks incrementally using less computation and memory resources instead of retraining the model from scratch whenever new task arrives.
We introduce a new framework to make continual learning feasible in unsupervised mode by using pseudo label obtained from cluster assignments to update model.
arXiv Detail & Related papers (2021-04-14T23:46:17Z) - SID: Incremental Learning for Anchor-Free Object Detection via Selective
and Inter-Related Distillation [16.281712605385316]
Incremental learning requires a model to continually learn new tasks from streaming data.
Traditional fine-tuning of a well-trained deep neural network on a new task will dramatically degrade performance on the old task.
We propose a novel incremental learning paradigm called Selective and Inter-related Distillation (SID)
arXiv Detail & Related papers (2020-12-31T04:12:06Z) - Incremental Learning from Low-labelled Stream Data in Open-Set Video
Face Recognition [0.0]
We propose a novel incremental learning approach which combines a deep features encoder with an Open-Set Dynamic Ensembles of SVM.
Our method can use unsupervised operational data to enhance recognition.
Results show a benefit of up to 15% F1-score increase respect to non-adaptive state-of-the-art methods.
arXiv Detail & Related papers (2020-12-17T13:28:13Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
In this work, we explore fine-tuning methods of BERT -- a pre-trained Transformer based language model.
Our experimental results show an advantage in model performance by maximizing the approximate knowledge gain of the model.
We analyze the benefits of freezing layers of the language model during fine-tuning to reduce the number of trainable parameters.
arXiv Detail & Related papers (2020-12-04T08:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.