MaestroMotif: Skill Design from Artificial Intelligence Feedback
- URL: http://arxiv.org/abs/2412.08542v1
- Date: Wed, 11 Dec 2024 16:59:31 GMT
- Title: MaestroMotif: Skill Design from Artificial Intelligence Feedback
- Authors: Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang, Pierre-Luc Bacon, Doina Precup, Marlos C. Machado, Pierluca D'Oro,
- Abstract summary: MaestroMotif is a method for AI-assisted skill design, which yields high-performing and adaptable agents.<n>We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents.
- Score: 67.17724089381056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
Related papers
- Learning Adaptive Dexterous Grasping from Single Demonstrations [27.806856958659054]
This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection.
AdaDexGrasp learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM)
We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations.
arXiv Detail & Related papers (2025-03-26T04:05:50Z) - WisdomBot: Tuning Large Language Models with Artificial Intelligence Knowledge [17.74988145184004]
Large language models (LLMs) have emerged as powerful tools in natural language processing (NLP)
This paper presents a novel LLM for education named WisdomBot, which combines the power of LLMs with educational theories.
We introduce two key enhancements during inference, i.e., local knowledge base retrieval augmentation and search engine retrieval augmentation during inference.
arXiv Detail & Related papers (2025-01-22T13:36:46Z) - Dynamic Skill Adaptation for Large Language Models [78.31322532135272]
We present Dynamic Skill Adaptation (DSA), an adaptive and dynamic framework to adapt novel and complex skills to Large Language Models (LLMs)
For every skill, we utilize LLMs to generate both textbook-like data which contains detailed descriptions of skills for pre-training and exercise-like data which targets at explicitly utilizing the skills to solve problems for instruction-tuning.
Experiments on large language models such as LLAMA and Mistral demonstrate the effectiveness of our proposed methods in adapting math reasoning skills and social study skills.
arXiv Detail & Related papers (2024-12-26T22:04:23Z) - Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models [19.73329768987112]
CurricuLLM is a curriculum learning tool for complex robot control tasks.
It generates subtasks that aid target task learning in natural language form.
It also translates natural language description of subtasks into executable code.
CurricuLLM can aid learning complex robot control tasks.
arXiv Detail & Related papers (2024-09-27T01:48:16Z) - Agentic Skill Discovery [19.5703917813767]
Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models (LLMs) to low-level robotic control.
A remaining challenge is to acquire a diverse set of fundamental skills.
We introduce a novel framework for skill discovery that is entirely driven by LLMs.
arXiv Detail & Related papers (2024-05-23T19:44:03Z) - Rethinking Mutual Information for Language Conditioned Skill Discovery
on Imitation Learning [36.624923972563415]
We propose an end-to-end imitation learning approach known as Language Conditioned Skill Discovery (LCSD)
We utilize vector quantization to learn discrete latent skills and leverage skill sequences of trajectories to reconstruct high-level semantic instructions.
Our approach exhibits enhanced generalization capabilities towards unseen tasks, improved skill interpretability, and notably higher rates of task completion success.
arXiv Detail & Related papers (2024-02-27T13:53:52Z) - SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution [75.2573501625811]
Diffusion models have demonstrated strong potential for robotic trajectory planning.
generating coherent trajectories from high-level instructions remains challenging.
We propose SkillDiffuser, an end-to-end hierarchical planning framework.
arXiv Detail & Related papers (2023-12-18T18:16:52Z) - Instructed Language Models with Retrievers Are Powerful Entity Linkers [87.16283281290053]
Instructed Generative Entity Linker (INSGENEL) is the first approach that enables casual language models to perform entity linking over knowledge bases.
INSGENEL outperforms previous generative alternatives with +6.8 F1 points gain on average.
arXiv Detail & Related papers (2023-11-06T16:38:51Z) - PADL: Language-Directed Physics-Based Character Control [66.517142635815]
We present PADL, which allows users to issue natural language commands for specifying high-level tasks and low-level skills that a character should perform.
We show that our framework can be applied to effectively direct a simulated humanoid character to perform a diverse array of complex motor skills.
arXiv Detail & Related papers (2023-01-31T18:59:22Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
We present a comprehensive review of Knowledge Enhanced Pre-trained Language Models (KE-PLMs)
For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG) and rule knowledge.
The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods.
arXiv Detail & Related papers (2022-11-11T04:29:02Z) - LISA: Learning Interpretable Skill Abstractions from Language [85.20587800593293]
We propose a hierarchical imitation learning framework that can learn diverse, interpretable skills from language-conditioned demonstrations.
Our method demonstrates a more natural way to condition on language in sequential decision-making problems.
arXiv Detail & Related papers (2022-02-28T19:43:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.