Learning Adaptive Dexterous Grasping from Single Demonstrations
- URL: http://arxiv.org/abs/2503.20208v1
- Date: Wed, 26 Mar 2025 04:05:50 GMT
- Title: Learning Adaptive Dexterous Grasping from Single Demonstrations
- Authors: Liangzhi Shi, Yulin Liu, Lingqi Zeng, Bo Ai, Zhengdong Hong, Hao Su,
- Abstract summary: This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection.<n>AdaDexGrasp learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM)<n>We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations.
- Score: 27.806856958659054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
Related papers
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.<n>Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.<n>We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.<n>On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 30K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Maximum Entropy Model-based Reinforcement Learning [0.0]
This work connects exploration techniques and model-based reinforcement learning.
We have designed a novel exploration method that takes into account features of the model-based approach.
We also demonstrate through experiments that our method significantly improves the performance of the model-based algorithm Dreamer.
arXiv Detail & Related papers (2021-12-02T13:07:29Z) - Demonstration-Guided Reinforcement Learning with Learned Skills [23.376115889936628]
Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors.
In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL.
We propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations.
arXiv Detail & Related papers (2021-07-21T17:59:34Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
We develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks.
We show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible.
We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
arXiv Detail & Related papers (2020-04-27T17:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.