Exploiting the Index Gradients for Optimization-Based Jailbreaking on Large Language Models
- URL: http://arxiv.org/abs/2412.08615v2
- Date: Mon, 16 Dec 2024 04:05:45 GMT
- Title: Exploiting the Index Gradients for Optimization-Based Jailbreaking on Large Language Models
- Authors: Jiahui Li, Yongchang Hao, Haoyu Xu, Xing Wang, Yu Hong,
- Abstract summary: Greedy Coordinate Gradient (GCG) method has demonstrated ability to automatically generate adversarial suffixes that jailbreak state-of-the-art LLMs.
We propose the Model Attack Gradient Index GCG (MAGIC) that addresses the Indirect Effect by exploiting the gradient information of the suffix tokens.
Experiments on AdvBench show that MAGIC achieves up to a 1.5x speedup, while maintaining Attack Success Rates (ASR) on par or even higher.
- Score: 16.83476701024932
- License:
- Abstract: Despite the advancements in training Large Language Models (LLMs) with alignment techniques to enhance the safety of generated content, these models remain susceptible to jailbreak, an adversarial attack method that exposes security vulnerabilities in LLMs. Notably, the Greedy Coordinate Gradient (GCG) method has demonstrated the ability to automatically generate adversarial suffixes that jailbreak state-of-the-art LLMs. However, the optimization process involved in GCG is highly time-consuming, rendering the jailbreaking pipeline inefficient. In this paper, we investigate the process of GCG and identify an issue of Indirect Effect, the key bottleneck of the GCG optimization. To this end, we propose the Model Attack Gradient Index GCG (MAGIC), that addresses the Indirect Effect by exploiting the gradient information of the suffix tokens, thereby accelerating the procedure by having less computation and fewer iterations. Our experiments on AdvBench show that MAGIC achieves up to a 1.5x speedup, while maintaining Attack Success Rates (ASR) on par or even higher than other baselines. Our MAGIC achieved an ASR of 74% on the Llama-2 and an ASR of 54% when conducting transfer attacks on GPT-3.5. Code is available at https://github.com/jiah-li/magic.
Related papers
- AmpleGCG-Plus: A Strong Generative Model of Adversarial Suffixes to Jailbreak LLMs with Higher Success Rates in Fewer Attempts [10.536276489213497]
A generative model can quickly produce numerous customizable gibberish adversarial suffixes for any harmful query.
We introduce AmpleGCG-Plus, an enhanced version that achieves better performance in fewer attempts.
We jailbreak the newer GPT-4o series of models at similar rates to GPT-4, and, uncovers vulnerabilities against the recently proposed circuit breakers defense.
arXiv Detail & Related papers (2024-10-29T15:40:07Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
We introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability.
Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100% ASR on various open-source LLMs.
It exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3.
arXiv Detail & Related papers (2024-10-24T06:36:12Z) - Boosting Jailbreak Transferability for Large Language Models [10.884050438726215]
We propose a scenario induction template, optimized suffix selection, and the integration of re-suffix attack mechanism to reduce inconsistent outputs.
Our approach has shown superior performance in extensive experiments across various benchmarks, achieving nearly 100% success rates in both attack execution and transferability.
arXiv Detail & Related papers (2024-10-21T05:11:19Z) - Faster-GCG: Efficient Discrete Optimization Jailbreak Attacks against Aligned Large Language Models [16.938267820586024]
We propose Faster-GCG, an efficient adversarial jailbreak method by delving deep into the design of GCG.
Experiments demonstrate that Faster-GCG can surpass the original GCG with only 1/10 of the computational cost.
arXiv Detail & Related papers (2024-10-20T11:27:41Z) - AttnGCG: Enhancing Jailbreaking Attacks on LLMs with Attention Manipulation [42.797865918373326]
We study the vulnerabilities of transformer-based Large Language Models (LLMs) to jailbreaking attacks.
We introduce an enhanced method that manipulates models' attention scores to facilitate jailbreaking.
Our strategy also demonstrates robust attack transferability against both unseen harmful goals and black-box LLMs.
arXiv Detail & Related papers (2024-10-11T17:55:09Z) - Improved Techniques for Optimization-Based Jailbreaking on Large Language Models [78.32176751215073]
Greedy Coordinate Gradient (GCG) attack's success has led to a growing interest in the study of optimization-based jailbreaking techniques.
We present several improved (empirical) techniques for optimization-based jailbreaks like GCG.
The results demonstrate that our improved techniques can help GCG outperform state-of-the-art jailbreaking attacks and achieve nearly 100% attack success rate.
arXiv Detail & Related papers (2024-05-31T17:07:15Z) - Improved Generation of Adversarial Examples Against Safety-aligned LLMs [72.38072942860309]
Adversarial prompts generated using gradient-based methods exhibit outstanding performance in performing automatic jailbreak attacks against safety-aligned LLMs.
In this paper, we explore a new perspective on this problem, suggesting that it can be alleviated by leveraging innovations inspired in transfer-based attacks.
We show that 87% of the query-specific adversarial suffixes generated by the developed combination can induce Llama-2-7B-Chat to produce the output that exactly matches the target string on AdvBench.
arXiv Detail & Related papers (2024-05-28T06:10:12Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer.
To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback.
Recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails.
This paper proposes a method called Gradient Cuff to detect jailbreak attempts.
arXiv Detail & Related papers (2024-03-01T03:29:54Z) - PAL: Proxy-Guided Black-Box Attack on Large Language Models [55.57987172146731]
Large Language Models (LLMs) have surged in popularity in recent months, but they have demonstrated capabilities to generate harmful content when manipulated.
We introduce the Proxy-Guided Attack on LLMs (PAL), the first optimization-based attack on LLMs in a black-box query-only setting.
Our attack achieves 84% attack success rate (ASR) on GPT-3.5-Turbo and 48% on Llama-2-7B, compared to 4% for the current state of the art.
arXiv Detail & Related papers (2024-02-15T02:54:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.