Multi-modal Representation Learning Enables Accurate Protein Function Prediction in Low-Data Setting
- URL: http://arxiv.org/abs/2412.08649v1
- Date: Fri, 22 Nov 2024 20:13:55 GMT
- Title: Multi-modal Representation Learning Enables Accurate Protein Function Prediction in Low-Data Setting
- Authors: Serbülent Ünsal, Sinem Özdemir, Bünyamin Kasap, M. Erşan Kalaycı, Kemal Turhan, Tunca Doğan, Aybar C. Acar,
- Abstract summary: HOPER (HOlistic ProtEin Representation) is a novel framework designed to enhance protein function prediction (PFP) in low-data settings.
Our results highlight the effectiveness of multimodal representation learning for overcoming data limitations in biological research.
- Score: 0.0
- License:
- Abstract: In this study, we propose HOPER (HOlistic ProtEin Representation), a novel multimodal learning framework designed to enhance protein function prediction (PFP) in low-data settings. The challenge of predicting protein functions is compounded by the limited availability of labeled data. Traditional machine learning models already struggle in such cases, and while deep learning models excel with abundant data, they also face difficulties when data is scarce. HOPER addresses this issue by integrating three distinct modalities - protein sequences, biomedical text, and protein-protein interaction (PPI) networks - to create a comprehensive protein representation. The model utilizes autoencoders to generate holistic embeddings, which are then employed for PFP tasks using transfer learning. HOPER outperforms existing methods on a benchmark dataset across all Gene Ontology categories, i.e., molecular function, biological process, and cellular component. Additionally, we demonstrate its practical utility by identifying new immune-escape proteins in lung adenocarcinoma, offering insights into potential therapeutic targets. Our results highlight the effectiveness of multimodal representation learning for overcoming data limitations in biological research, potentially enabling more accurate and scalable protein function prediction. HOPER source code and datasets are available at https://github.com/kansil/HOPER
Related papers
- ProtCLIP: Function-Informed Protein Multi-Modal Learning [18.61302416993122]
We develop ProtCLIP, a multi-modality foundation model that represents function-aware protein embeddings.
Our ProtCLIP consistently achieves SOTA performance, with remarkable improvements of 75% on average in five cross-modal transformation benchmarks.
The experimental results verify the extraordinary potential of ProtCLIP serving as the protein multi-modality foundation model.
arXiv Detail & Related papers (2024-12-28T04:23:47Z) - Metalic: Meta-Learning In-Context with Protein Language Models [5.868595531658237]
Machine learning has emerged as a promising technique for such prediction tasks.
Due to data scarcity, we believe meta-learning will play a pivotal role in advancing protein engineering.
arXiv Detail & Related papers (2024-10-10T20:19:35Z) - Protein-Mamba: Biological Mamba Models for Protein Function Prediction [18.642511763423048]
Protein-Mamba is a novel two-stage model that leverages both self-supervised learning and fine-tuning to improve protein function prediction.
Our experiments demonstrate that Protein-Mamba achieves competitive performance, compared with a couple of state-of-the-art methods.
arXiv Detail & Related papers (2024-09-22T22:51:56Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
arXiv Detail & Related papers (2024-03-30T05:32:42Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
We propose novel semantic data augmentation methods to incorporate backbone chemical and side-chain biophysical information into protein classification tasks.
Specifically, we leverage molecular biophysical, secondary structure, chemical bonds, andionic features of proteins to facilitate classification tasks.
arXiv Detail & Related papers (2024-03-21T13:27:57Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - DeepGATGO: A Hierarchical Pretraining-Based Graph-Attention Model for
Automatic Protein Function Prediction [4.608328575930055]
Automatic protein function prediction (AFP) is classified as a large-scale multi-label classification problem.
Currently, popular methods primarily combine protein-related information and Gene Ontology (GO) terms to generate final functional predictions.
We propose a sequence-based hierarchical prediction method, DeepGATGO, which processes protein sequences and GO term labels hierarchically.
arXiv Detail & Related papers (2023-07-24T07:01:32Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
We propose a latent diffusion model that can reduce the complexity of protein modeling.
We show that our method can effectively generate novel protein backbone structures with high designability and efficiency.
arXiv Detail & Related papers (2023-05-06T19:10:19Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
We propose Representation Learning via Dictionary Learning (R2DL), an end-to-end representation learning framework.
R2DL reprograms a pretrained English language model to learn the embeddings of protein sequences.
Our model can attain better accuracy and significantly improve the data efficiency by up to $105$ times over the baselines set by pretrained and standard supervised methods.
arXiv Detail & Related papers (2023-01-05T15:55:18Z) - Deep Learning Methods for Protein Family Classification on PDB
Sequencing Data [0.0]
We demonstrate and compare the performance of several deep learning frameworks, including novel bi-directional LSTM and convolutional models, on widely available sequencing data.
Our results show that our deep learning models deliver superior performance to classical machine learning methods, with the convolutional architecture providing the most impressive inference performance.
arXiv Detail & Related papers (2022-07-14T06:11:32Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information.
We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
arXiv Detail & Related papers (2022-05-24T00:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.