Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images
- URL: http://arxiv.org/abs/2412.08755v2
- Date: Thu, 09 Jan 2025 19:15:20 GMT
- Title: Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images
- Authors: Kyle Stein, Andrew Arash Mahyari, Guillermo Francia, Eman El-Sheikh,
- Abstract summary: Backdoor attacks pose a critical threat by embedding hidden triggers into inputs, causing models to misclassify them into target labels.
We introduce a groundbreaking method to detect unseen backdoored images during both training and inference.
Our approach trains learnable text prompts to differentiate clean images from those with hidden backdoor triggers.
- Score: 0.0
- License:
- Abstract: Backdoor attacks pose a critical threat by embedding hidden triggers into inputs, causing models to misclassify them into target labels. While extensive research has focused on mitigating these attacks in object recognition models through weight fine-tuning, much less attention has been given to detecting backdoored samples directly. Given the vast datasets used in training, manual inspection for backdoor triggers is impractical, and even state-of-the-art defense mechanisms fail to fully neutralize their impact. To address this gap, we introduce a groundbreaking method to detect unseen backdoored images during both training and inference. Leveraging the transformative success of prompt tuning in Vision Language Models (VLMs), our approach trains learnable text prompts to differentiate clean images from those with hidden backdoor triggers. Experiments demonstrate the exceptional efficacy of this method, achieving an impressive average accuracy of 86% across two renowned datasets for detecting unseen backdoor triggers, establishing a new standard in backdoor defense.
Related papers
- A Backdoor Attack Scheme with Invisible Triggers Based on Model Architecture Modification [12.393139669821869]
Traditional backdoor attacks involve injecting malicious samples with specific triggers into the training data.
More sophisticated attacks modify the model's architecture directly.
A novel backdoor attack method is presented in the paper.
It embeds the backdoor within the model's architecture and has the capability to generate inconspicuous and stealthy triggers.
arXiv Detail & Related papers (2024-12-22T07:39:43Z) - Twin Trigger Generative Networks for Backdoor Attacks against Object Detection [14.578800906364414]
Object detectors, which are widely used in real-world applications, are vulnerable to backdoor attacks.
Most research on backdoor attacks has focused on image classification, with limited investigation into object detection.
We propose novel twin trigger generative networks to generate invisible triggers for implanting backdoors into models during training, and visible triggers for steady activation during inference.
arXiv Detail & Related papers (2024-11-23T03:46:45Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Backdoor Defense through Self-Supervised and Generative Learning [0.0]
Training on such data injects a backdoor which causes malicious inference in selected test samples.
This paper explores an approach based on generative modelling of per-class distributions in a self-supervised representation space.
In both cases, we find that per-class generative models allow to detect poisoned data and cleanse the dataset.
arXiv Detail & Related papers (2024-09-02T11:40:01Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Setting the Trap: Capturing and Defeating Backdoors in Pretrained
Language Models through Honeypots [68.84056762301329]
Recent research has exposed the susceptibility of pretrained language models (PLMs) to backdoor attacks.
We propose and integrate a honeypot module into the original PLM to absorb backdoor information exclusively.
Our design is motivated by the observation that lower-layer representations in PLMs carry sufficient backdoor features.
arXiv Detail & Related papers (2023-10-28T08:21:16Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
We propose a generalized backdoor attack method based on the frequency domain.
It can implement backdoor implantation without mislabeling and accessing the training process.
We evaluate our approach in the no-label and clean-label cases on three datasets.
arXiv Detail & Related papers (2022-07-09T07:05:53Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.