Large Concept Models: Language Modeling in a Sentence Representation Space
- URL: http://arxiv.org/abs/2412.08821v2
- Date: Sun, 15 Dec 2024 21:20:12 GMT
- Title: Large Concept Models: Language Modeling in a Sentence Representation Space
- Authors: LCM team, Loïc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussà, David Dale, Hady Elsahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Ropers, Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, Holger Schwenk,
- Abstract summary: We present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept.
Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow.
We show that our model exhibits impressive zero-shot generalization performance to many languages.
- Score: 62.73366944266477
- License:
- Abstract: LLMs have revolutionized the field of artificial intelligence and have emerged as the de-facto tool for many tasks. The current established technology of LLMs is to process input and generate output at the token level. This is in sharp contrast to humans who operate at multiple levels of abstraction, well beyond single words, to analyze information and to generate creative content. In this paper, we present an attempt at an architecture which operates on an explicit higher-level semantic representation, which we name a concept. Concepts are language- and modality-agnostic and represent a higher level idea or action in a flow. Hence, we build a "Large Concept Model". In this study, as proof of feasibility, we assume that a concept corresponds to a sentence, and use an existing sentence embedding space, SONAR, which supports up to 200 languages in both text and speech modalities. The Large Concept Model is trained to perform autoregressive sentence prediction in an embedding space. We explore multiple approaches, namely MSE regression, variants of diffusion-based generation, and models operating in a quantized SONAR space. These explorations are performed using 1.6B parameter models and training data in the order of 1.3T tokens. We then scale one architecture to a model size of 7B parameters and training data of about 2.7T tokens. We perform an experimental evaluation on several generative tasks, namely summarization and a new task of summary expansion. Finally, we show that our model exhibits impressive zero-shot generalization performance to many languages, outperforming existing LLMs of the same size. The training code of our models is freely available.
Related papers
- Solvable Dynamics of Self-Supervised Word Embeddings and the Emergence of Analogical Reasoning [3.519547280344187]
We study a class of solvable contrastive self-supervised algorithms which we term quadratic word embedding models.
Our solutions reveal that these models learn linear subspaces one at a time, each one incrementing the effective rank of the embeddings until model capacity is saturated.
We use our dynamical theory to predict how and when models acquire the ability to complete analogies.
arXiv Detail & Related papers (2025-02-14T02:16:48Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - Code Representation Learning At Scale [75.04686476303436]
We fuel code representation learning with a vast amount of code data via a two-stage pretraining scheme.
We first train the encoders via a mix that leverages both randomness in masking language modeling and the structure aspect of programming language.
We then enhance the representations via contrastive learning with hard negative and hard positive constructed in an unsupervised manner.
arXiv Detail & Related papers (2024-02-02T22:19:15Z) - Kosmos-2: Grounding Multimodal Large Language Models to the World [107.27280175398089]
We introduce Kosmos-2, a Multimodal Large Language Model (MLLM)
It enables new capabilities of perceiving object descriptions (e.g., bounding boxes) and grounding text to the visual world.
Code and pretrained models are available at https://aka.ms/kosmos-2.
arXiv Detail & Related papers (2023-06-26T16:32:47Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - OCHADAI-KYODAI at SemEval-2021 Task 1: Enhancing Model Generalization
and Robustness for Lexical Complexity Prediction [8.066349353140819]
We propose an ensemble model for predicting the lexical complexity of words and multiword expressions.
The model receives as input a sentence with a target word or MWEand outputs its complexity score.
Our model achieved competitive results and ranked among the top-10 systems in both sub-tasks.
arXiv Detail & Related papers (2021-05-12T09:27:46Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.