Parity symmetry breaking of spin-$j$ coherent state superpositions in Gaussian noise channel
- URL: http://arxiv.org/abs/2412.08823v1
- Date: Wed, 11 Dec 2024 23:48:00 GMT
- Title: Parity symmetry breaking of spin-$j$ coherent state superpositions in Gaussian noise channel
- Authors: Bouchra El Alaoui, Abdallah Slaoui, Abderrahim Lakhfif, Rachid Ahl Laamara,
- Abstract summary: Wigner function and Wigner-Yanase skew information are connected through quantum coherence.
We analyze parity symmetry and asymmetry in the superposition of two spin coherent states for a spin-$1/2$, as well as for a general spin-$j$.
- Score: 0.0
- License:
- Abstract: The Wigner function and Wigner-Yanase skew information are connected through quantum coherence. States with high skew information often exhibit more pronounced negative regions in their Wigner functions, indicative of quantum interference and non-classical behavior. Thus, the relationship between these two concepts is that states with high quantum coherence tend to display more non-classical features in their Wigner functions. By exploiting this relationship, which manifests as parity symmetry and asymmetry, we analyze parity symmetry and asymmetry in the superposition of two spin coherent states for a spin-$1/2$, as well as for a general spin-$j$. This analysis shows that the preservation of the parity asymmetry, or the violation of the parity symmetry, correlates with an increase in the value of spin $j$. Additionally, we investigate the behavior of parity symmetry and asymmetry of these states subjected to a Gaussian noise channel. Specifically, we examine how this parity symmetry and asymmetry change and identify the points at which parity symmetry is violated in the spin-$1/2$ cat state. Notably, the violation of parity symmetry becomes more pronounced at higher values of the decoherence parameter $s$. Our study shows how the spin value $j$ affects the breaking of parity symmetry in general spin-$j$ cat states that are hit by Gaussian noise.
Related papers
- Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Diagnosing Strong-to-Weak Symmetry Breaking via Wightman Correlators [20.572965801171225]
Recent developments have extended the discussion of symmetry and its breaking to mixed states.
We propose the Wightman correlator as an alternative diagnostic tool.
arXiv Detail & Related papers (2024-10-12T02:04:40Z) - Spontaneous symmetry breaking in open quantum systems: strong, weak, and strong-to-weak [4.41737598556146]
We show that strong symmetry always spontaneously breaks into the corresponding weak symmetry.
We conjecture that this relation among strong-to-weak symmetry breaking, gapless modes, and symmetry-charge diffusion is general for continuous symmetries.
arXiv Detail & Related papers (2024-06-27T17:55:36Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Asymmetry activation and its relation to coherence under permutation operation [53.64687146666141]
A Dicke state and its decohered state are invariant for permutation.
When another qubits state to each of them is attached, the whole state is not invariant for permutation, and has a certain asymmetry for permutation.
arXiv Detail & Related papers (2023-11-17T03:33:40Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - The Asymmetric Valence-Bond-Solid States in Quantum Spin Chains: The
Difference Between Odd and Even Spins [0.0]
We develop an intuitive diagrammatic explanation of the difference between chains with odd $S$ and even $S$.
This is at the heart of the theory of symmetry-protected topological (SPT) phases.
It also extends to spin chains with general integer $S$ and provides us with an explanation of the essential difference between models with odd and even spins.
arXiv Detail & Related papers (2022-05-02T04:58:31Z) - Symmetry from Entanglement Suppression [0.0]
We show that a minimally entangling $S$-matrix would give rise to global symmetries.
For $N_q$ species of qubit, the Identity gate is associated with an $[SU(2)]N_q$ symmetry.
arXiv Detail & Related papers (2021-04-22T02:50:10Z) - Categorical symmetry and non-invertible anomaly in symmetry-breaking and
topological phase transitions [0.974672460306765]
For a zero-temperature Landau symmetry breaking transition in $n$-dimensional space that completely breaks a finite symmetry $G$, the critical point at the transition has the symmetry $G$.
We show that the critical point also has a dual symmetry - a $(n-1)-symmetry described by a higher group when $G is Abelian or an algebraic $(n-1)-symmetry beyond higher group when $G is non-Abelian.
arXiv Detail & Related papers (2019-12-31T18:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.