Beyond Reweighting: On the Predictive Role of Covariate Shift in Effect Generalization
- URL: http://arxiv.org/abs/2412.08869v1
- Date: Thu, 12 Dec 2024 02:06:27 GMT
- Title: Beyond Reweighting: On the Predictive Role of Covariate Shift in Effect Generalization
- Authors: Ying Jin, Naoki Egami, Dominik Rothenhäusler,
- Abstract summary: We show that adjusting for shift in observed variables is often insufficient for generalization.
We present a series of empirical evidence from two large-scale multi-site replication studies.
We then interpret this phenomenon by connecting it to similar patterns that can be theoretically derived from a random distribution shift model.
- Score: 5.280036476742084
- License:
- Abstract: Many existing approaches to generalizing statistical inference amidst distribution shift operate under the covariate shift assumption, which posits that the conditional distribution of unobserved variables given observable ones is invariant across populations. However, recent empirical investigations have demonstrated that adjusting for shift in observed variables (covariate shift) is often insufficient for generalization. In other words, covariate shift does not typically ``explain away'' the distribution shift between settings. As such, addressing the unknown yet non-negligible shift in the unobserved variables given observed ones (conditional shift) is crucial for generalizable inference. In this paper, we present a series of empirical evidence from two large-scale multi-site replication studies to support a new role of covariate shift in ``predicting'' the strength of the unknown conditional shift. Analyzing 680 studies across 65 sites, we find that even though the conditional shift is non-negligible, its strength can often be bounded by that of the observable covariate shift. However, this pattern only emerges when the two sources of shifts are quantified by our proposed standardized, ``pivotal'' measures. We then interpret this phenomenon by connecting it to similar patterns that can be theoretically derived from a random distribution shift model. Finally, we demonstrate that exploiting the predictive role of covariate shift leads to reliable and efficient uncertainty quantification for target estimates in generalization tasks with partially observed data. Overall, our empirical and theoretical analyses suggest a new way to approach the problem of distributional shift, generalizability, and external validity.
Related papers
- SoftCVI: Contrastive variational inference with self-generated soft labels [2.5398014196797614]
Variational inference and Markov chain Monte Carlo methods are the predominant tools for this task.
We introduce Soft Contrastive Variational Inference (SoftCVI), which allows a family of variational objectives to be derived through a contrastive estimation framework.
We find that SoftCVI can be used to form objectives which are stable to train and mass-covering, frequently outperforming inference with other variational approaches.
arXiv Detail & Related papers (2024-07-22T14:54:12Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
proxy variables allow for adaptation to distribution shift without explicitly recovering or modeling latent variables.
We develop a two-stage kernel estimation approach to adapt to complex distribution shifts in both settings.
arXiv Detail & Related papers (2024-03-12T09:32:41Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Temporally Disentangled Representation Learning [14.762231867144065]
It is unknown whether the underlying latent variables and their causal relations are identifiable if they have arbitrary, nonparametric causal influences in between.
We propose textbftextttTDRL, a principled framework to recover time-delayed latent causal variables.
Our approach considerably outperforms existing baselines that do not correctly exploit this modular representation of changes.
arXiv Detail & Related papers (2022-10-24T23:02:49Z) - Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis [7.895866278697778]
Machine learning approaches commonly rely on the assumption of independent and identically distributed (i.i.d.) data.
In reality, this assumption is almost always violated due to distribution shifts between environments.
We propose the Mechanism Shift Score (MSS), a score-based approach amenable to various empirical estimators.
arXiv Detail & Related papers (2022-06-04T15:39:30Z) - Covariate Shift in High-Dimensional Random Feature Regression [44.13449065077103]
Covariate shift is a significant obstacle in the development of robust machine learning models.
We present a theoretical understanding in context of modern machine learning.
arXiv Detail & Related papers (2021-11-16T05:23:28Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.