Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis
- URL: http://arxiv.org/abs/2206.02013v1
- Date: Sat, 4 Jun 2022 15:39:30 GMT
- Title: Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis
- Authors: Ronan Perry, Julius von K\"ugelgen, Bernhard Sch\"olkopf
- Abstract summary: Machine learning approaches commonly rely on the assumption of independent and identically distributed (i.i.d.) data.
In reality, this assumption is almost always violated due to distribution shifts between environments.
We propose the Mechanism Shift Score (MSS), a score-based approach amenable to various empirical estimators.
- Score: 7.895866278697778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning approaches commonly rely on the assumption of independent
and identically distributed (i.i.d.) data. In reality, however, this assumption
is almost always violated due to distribution shifts between environments.
Although valuable learning signals can be provided by heterogeneous data from
changing distributions, it is also known that learning under arbitrary
(adversarial) changes is impossible. Causality provides a useful framework for
modeling distribution shifts, since causal models encode both observational and
interventional distributions. In this work, we explore the sparse mechanism
shift hypothesis, which posits that distribution shifts occur due to a small
number of changing causal conditionals. Motivated by this idea, we apply it to
learning causal structure from heterogeneous environments, where i.i.d. data
only allows for learning an equivalence class of graphs without restrictive
assumptions. We propose the Mechanism Shift Score (MSS), a score-based approach
amenable to various empirical estimators, which provably identifies the entire
causal structure with high probability if the sparse mechanism shift hypothesis
holds. Empirically, we verify behavior predicted by the theory and compare
multiple estimators and score functions to identify the best approaches in
practice. Compared to other methods, we show how MSS bridges a gap by both
being nonparametric as well as explicitly leveraging sparse changes.
Related papers
- Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction [5.38274042816001]
In observational data, the distribution shift is often driven by unobserved confounding factors.
This motivates us to study the domain adaptation problem with observational data.
We show a model that uses the learned lower-dimensional subspace can incur nearly ideal gap between target and source risk.
arXiv Detail & Related papers (2024-06-22T17:43:08Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
proxy variables allow for adaptation to distribution shift without explicitly recovering or modeling latent variables.
We develop a two-stage kernel estimation approach to adapt to complex distribution shifts in both settings.
arXiv Detail & Related papers (2024-03-12T09:32:41Z) - iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models [48.33685559041322]
This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables.
Code implementing the proposed method is open-source and publicly available at https://github.com/kevinsbello/iSCAN.
arXiv Detail & Related papers (2023-06-30T01:48:11Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - On the Interventional Kullback-Leibler Divergence [11.57430292133273]
We introduce the Interventional Kullback-Leibler divergence to quantify both structural and distributional differences between causal models.
We propose a sufficient condition on the intervention targets to identify subsets of observed variables on which the models provably agree or disagree.
arXiv Detail & Related papers (2023-02-10T17:03:29Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
Causal discovery from observational data is a challenging task to which an exact solution cannot always be identified.
We propose a new set of assumptions that constrain possible causal relationships based on the nature of the variables.
arXiv Detail & Related papers (2021-07-22T14:23:08Z) - Nonlinear Invariant Risk Minimization: A Causal Approach [5.63479133344366]
We propose a learning paradigm that enables out-of-distribution generalization in the nonlinear setting.
We show identifiability of the data representation up to very simple transformations.
Extensive experiments on both synthetic and real-world datasets show that our approach significantly outperforms a variety of baseline methods.
arXiv Detail & Related papers (2021-02-24T15:38:41Z) - Few-shot Domain Adaptation by Causal Mechanism Transfer [107.08605582020866]
We study few-shot supervised domain adaptation (DA) for regression problems, where only a few labeled target domain data and many labeled source domain data are available.
Many of the current DA methods base their transfer assumptions on either parametrized distribution shift or apparent distribution similarities.
We propose mechanism transfer, a meta-distributional scenario in which a data generating mechanism is invariant among domains.
arXiv Detail & Related papers (2020-02-10T02:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.