Video Repurposing from User Generated Content: A Large-scale Dataset and Benchmark
- URL: http://arxiv.org/abs/2412.08879v2
- Date: Mon, 16 Dec 2024 03:16:59 GMT
- Title: Video Repurposing from User Generated Content: A Large-scale Dataset and Benchmark
- Authors: Yongliang Wu, Wenbo Zhu, Jiawang Cao, Yi Lu, Bozheng Li, Weiheng Chi, Zihan Qiu, Lirian Su, Haolin Zheng, Jay Wu, Xu Yang,
- Abstract summary: We propose Repurpose-10K, an extensive dataset comprising over 10,000 videos with more than 120,000 annotated clips.
We propose a two-stage solution to obtain annotations from real-world user-generated content.
We offer a baseline model to address this challenging task by integrating audio, visual, and caption aspects.
- Score: 5.76230561819199
- License:
- Abstract: The demand for producing short-form videos for sharing on social media platforms has experienced significant growth in recent times. Despite notable advancements in the fields of video summarization and highlight detection, which can create partially usable short films from raw videos, these approaches are often domain-specific and require an in-depth understanding of real-world video content. To tackle this predicament, we propose Repurpose-10K, an extensive dataset comprising over 10,000 videos with more than 120,000 annotated clips aimed at resolving the video long-to-short task. Recognizing the inherent constraints posed by untrained human annotators, which can result in inaccurate annotations for repurposed videos, we propose a two-stage solution to obtain annotations from real-world user-generated content. Furthermore, we offer a baseline model to address this challenging task by integrating audio, visual, and caption aspects through a cross-modal fusion and alignment framework. We aspire for our work to ignite groundbreaking research in the lesser-explored realms of video repurposing.
Related papers
- Long Video Diffusion Generation with Segmented Cross-Attention and Content-Rich Video Data Curation [16.80010133425332]
We introduce Presto, a novel video diffusion model designed to generate 15-second videos with long-range coherence and rich content.
Presto achieves 78.5% on the VBench Semantic Score and 100% splits on the Dynamic Degree, outperforming existing state-of-the-art video generation methods.
arXiv Detail & Related papers (2024-12-02T09:32:36Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
We introduce SALOVA: Segment-Augmented Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content.
We present a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich context.
Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries.
arXiv Detail & Related papers (2024-11-25T08:04:47Z) - MultiVENT 2.0: A Massive Multilingual Benchmark for Event-Centric Video Retrieval [57.891157692501345]
$textbfMultiVENT 2.0$ is a large-scale, multilingual event-centric video retrieval benchmark.
It features a collection of more than 218,000 news videos and 3,906 queries targeting specific world events.
Preliminary results show that state-of-the-art vision-language models struggle significantly with this task.
arXiv Detail & Related papers (2024-10-15T13:56:34Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
We introduce an automated and scalable pipeline for generating a large-scale video summarization dataset.
We analyze the limitations of existing approaches and propose a new video summarization model that effectively addresses them.
Our work also presents a new benchmark dataset that contains 1200 long videos each with high-quality summaries annotated by professionals.
arXiv Detail & Related papers (2024-04-04T11:59:06Z) - Video Generation Beyond a Single Clip [76.5306434379088]
Video generation models can only generate video clips that are relatively short compared with the length of real videos.
To generate long videos covering diverse content and multiple events, we propose to use additional guidance to control the video generation process.
The proposed approach is complementary to existing efforts on video generation, which focus on generating realistic video within a fixed time window.
arXiv Detail & Related papers (2023-04-15T06:17:30Z) - TL;DW? Summarizing Instructional Videos with Task Relevance &
Cross-Modal Saliency [133.75876535332003]
We focus on summarizing instructional videos, an under-explored area of video summarization.
Existing video summarization datasets rely on manual frame-level annotations.
We propose an instructional video summarization network that combines a context-aware temporal video encoder and a segment scoring transformer.
arXiv Detail & Related papers (2022-08-14T04:07:40Z) - Transcript to Video: Efficient Clip Sequencing from Texts [65.87890762420922]
We present Transcript-to-Video -- a weakly-supervised framework that uses texts as input to automatically create video sequences from an extensive collection of shots.
Specifically, we propose a Content Retrieval Module and a Temporal Coherent Module to learn visual-language representations and model shot sequencing styles.
For fast inference, we introduce an efficient search strategy for real-time video clip sequencing.
arXiv Detail & Related papers (2021-07-25T17:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.