Stellar parameter prediction and spectral simulation using machine learning
- URL: http://arxiv.org/abs/2412.09002v1
- Date: Thu, 12 Dec 2024 07:09:42 GMT
- Title: Stellar parameter prediction and spectral simulation using machine learning
- Authors: Vojtěch Cvrček, Martino Romaniello, Radim Šára, Wolfram Freudling, Pascal Ballester,
- Abstract summary: We applied machine learning to the entire data history of ESO's High Accuracy Radial Velocity Planet Searcher (HARPS) instrument.
We trained standard and variational autoencoders on HARPS data to predict spectral parameters and generate spectra.
Our models excel at predicting spectral parameters and compressing real spectra, and they achieved a mean prediction error of approximately 50 K for effective temperatures.
- Score: 0.0
- License:
- Abstract: We applied machine learning to the entire data history of ESO's High Accuracy Radial Velocity Planet Searcher (HARPS) instrument. Our primary goal was to recover the physical properties of the observed objects, with a secondary emphasis on simulating spectra. We systematically investigated the impact of various factors on the accuracy and fidelity of the results, including the use of simulated data, the effect of varying amounts of real training data, network architectures, and learning paradigms. Our approach integrates supervised and unsupervised learning techniques within autoencoder frameworks. Our methodology leverages an existing simulation model that utilizes a library of existing stellar spectra in which the emerging flux is computed from first principles rooted in physics and a HARPS instrument model to generate simulated spectra comparable to observational data. We trained standard and variational autoencoders on HARPS data to predict spectral parameters and generate spectra. Our models excel at predicting spectral parameters and compressing real spectra, and they achieved a mean prediction error of approximately 50 K for effective temperatures, making them relevant for most astrophysical applications. Furthermore, the models predict metallicity ([M/H]) and surface gravity (log g) with an accuracy of approximately 0.03 dex and 0.04 dex, respectively, underscoring their broad applicability in astrophysical research. The models' computational efficiency, with processing times of 779.6 ms on CPU and 3.97 ms on GPU, makes them valuable for high-throughput applications like massive spectroscopic surveys and large archival studies. By achieving accuracy comparable to classical methods with significantly reduced computation time, our methodology enhances the scope and efficiency of spectroscopic analysis.
Related papers
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
nbi [0.0]
We train an ANPE model for the APOGEE survey and demonstrate its efficacy on both mock and real stellar spectra.
We introduce an effective approach to handling the measurement noise properties inherent in spectral data.
We discuss the utility of an ANPE "model zoo," where models are trained for specific instruments and distributed under the nbi framework.
arXiv Detail & Related papers (2023-12-09T21:30:07Z) - deep-REMAP: Parameterization of Stellar Spectra Using Regularized
Multi-Task Learning [0.0]
Deep-Regularized Ensemble-based Multi-task Learning with Asymmetric Loss for Probabilistic Inference ($rmdeep-REMAP$)
We develop a novel framework that utilizes the rich synthetic spectra from the PHOENIX library and observational data from the MARVELS survey to accurately predict stellar atmospheric parameters.
arXiv Detail & Related papers (2023-11-07T05:41:48Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Spatially-resolved Thermometry from Line-of-Sight Emission Spectroscopy
via Machine Learning [2.449329947677678]
The aim of this research is to explore the use of data-driven models in measuring temperature distributions.
Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN)
The proposed method is capable of measuring nonuniform temperature distributions from low-resolution spectra, even when the species concentration distribution in the gas mixtures is unknown.
arXiv Detail & Related papers (2022-12-15T13:46:15Z) - A universal synthetic dataset for machine learning on spectroscopic data [0.5801044612920815]
This dataset contains artificial spectra designed to represent experimental measurements from techniques including X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy.
The dataset generation process features customizable parameters, such as scan length and peak count, which can be adjusted to fit the problem at hand.
As an initial benchmark, we simulated a dataset containing 35,000 spectra based on 500 unique classes.
arXiv Detail & Related papers (2022-06-13T10:37:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - Cycle-StarNet: Bridging the gap between theory and data by leveraging
large datasets [0.0]
Current automated methods for analyzing spectra are either (a) data-driven, which requires prior knowledge of stellar parameters and elemental abundances, or (b) based on theoretical synthetic models that are susceptible to the gap between theory and practice.
We present a hybrid generative domain adaptation method that turns simulated stellar spectra into realistic spectra by applying unsupervised learning to large spectroscopic surveys.
arXiv Detail & Related papers (2020-07-06T23:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.