Learning and Current Prediction of PMSM Drive via Differential Neural Networks
- URL: http://arxiv.org/abs/2412.09028v1
- Date: Thu, 12 Dec 2024 07:43:27 GMT
- Title: Learning and Current Prediction of PMSM Drive via Differential Neural Networks
- Authors: Wenjie Mei, Xiaorui Wang, Yanrong Lu, Ke Yu, Shihua Li,
- Abstract summary: This study presents a novel approach utilizing differential neural networks (DNNs) to model nonlinear systems.
The efficacy of our approach is validated through experiments conducted under various load disturbances and no-load conditions.
- Score: 13.370017978792479
- License:
- Abstract: Learning models for dynamical systems in continuous time is significant for understanding complex phenomena and making accurate predictions. This study presents a novel approach utilizing differential neural networks (DNNs) to model nonlinear systems, specifically permanent magnet synchronous motors (PMSMs), and to predict their current trajectories. The efficacy of our approach is validated through experiments conducted under various load disturbances and no-load conditions. The results demonstrate that our method effectively and accurately reconstructs the original systems, showcasing strong short-term and long-term prediction capabilities and robustness. This study provides valuable insights into learning the inherent dynamics of complex dynamical data and holds potential for further applications in fields such as weather forecasting, robotics, and collective behavior analysis.
Related papers
- Learning Spatiotemporal Dynamical Systems from Point Process Observations [7.381752536547389]
Current neural network-based model approaches fall short when faced with data that is collected randomly over time and space.
In response, we developed a new method that can effectively learn from such process observations.
Our model integrates techniques from neural differential equations, neural point processes, implicit neural representations and amortized variational inference.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Learning Fine Scale Dynamics from Coarse Observations via Inner
Recurrence [0.0]
Recent work has focused on data-driven learning of the evolution of unknown systems via deep neural networks (DNNs)
This paper presents a computational technique to learn the fine-scale dynamics from such coarsely observed data.
arXiv Detail & Related papers (2022-06-03T20:28:52Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Physics-Incorporated Convolutional Recurrent Neural Networks for Source
Identification and Forecasting of Dynamical Systems [10.689157154434499]
In this paper, we present a hybrid framework combining numerical physics-based models with deep learning for source identification.
We formulate our model PhICNet as a convolutional recurrent neural network (RNN) which is end-to-end trainable for predicting S-temporal evolution.
Experimental results show that the proposed model can forecast the dynamics for a relatively long time and identify the sources as well.
arXiv Detail & Related papers (2020-04-14T00:27:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.