LETS Forecast: Learning Embedology for Time Series Forecasting
- URL: http://arxiv.org/abs/2506.06454v1
- Date: Fri, 06 Jun 2025 18:24:12 GMT
- Title: LETS Forecast: Learning Embedology for Time Series Forecasting
- Authors: Abrar Majeedi, Viswanatha Reddy Gajjala, Satya Sai Srinath Namburi GNVV, Nada Magdi Elkordi, Yin Li,
- Abstract summary: We introduce DeepEDM, a framework that integrates nonlinear dynamical systems modeling with deep neural networks.<n>Inspired by empirical dynamic modeling (EDM) and rooted in Takens' theorem, DeepEDM presents a novel deep model that learns a latent space from time-delayed embeddings.<n>Our results show that DeepEDM is robust to input noise, and outperforms state-of-the-art methods in forecasting accuracy.
- Score: 8.05466205230466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world time series are often governed by complex nonlinear dynamics. Understanding these underlying dynamics is crucial for precise future prediction. While deep learning has achieved major success in time series forecasting, many existing approaches do not explicitly model the dynamics. To bridge this gap, we introduce DeepEDM, a framework that integrates nonlinear dynamical systems modeling with deep neural networks. Inspired by empirical dynamic modeling (EDM) and rooted in Takens' theorem, DeepEDM presents a novel deep model that learns a latent space from time-delayed embeddings, and employs kernel regression to approximate the underlying dynamics, while leveraging efficient implementation of softmax attention and allowing for accurate prediction of future time steps. To evaluate our method, we conduct comprehensive experiments on synthetic data of nonlinear dynamical systems as well as real-world time series across domains. Our results show that DeepEDM is robust to input noise, and outperforms state-of-the-art methods in forecasting accuracy. Our code is available at: https://abrarmajeedi.github.io/deep_edm.
Related papers
- Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
We introduce Dynamical Diffusion (DyDiff), a theoretically sound framework that incorporates temporally aware forward and reverse processes.<n>Experiments across scientifictemporal forecasting, video prediction, and time series forecasting demonstrate that Dynamical Diffusion consistently improves performance in temporal predictive tasks.
arXiv Detail & Related papers (2025-03-02T16:10:32Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.<n>The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.<n>Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Learning and Current Prediction of PMSM Drive via Differential Neural Networks [13.370017978792479]
This study presents a novel approach utilizing differential neural networks (DNNs) to model nonlinear systems.<n>The efficacy of our approach is validated through experiments conducted under various load disturbances and no-load conditions.
arXiv Detail & Related papers (2024-12-12T07:43:27Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
We introduce the Dynamic System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework.
By integrating Voronoi tessellations with deep learning models, DSOVT is adept at predicting dynamical systems with sparse, unstructured observations.
Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics.
arXiv Detail & Related papers (2024-08-31T13:43:52Z) - Machine Learning Enhanced Hankel Dynamic-Mode Decomposition [0.0]
We develop a deep learning DMD based method to build an adaptive learning scheme that better approximates higher dimensional and chaotic dynamics.
This appears to be a key feature in enhancing the DMD overall, and it should help provide further insight for developing other deep learning methods for time series analysis and model generation.
arXiv Detail & Related papers (2023-03-11T02:56:29Z) - Statistical and machine learning approaches for prediction of long-time
excitation energy transfer dynamics [0.0]
The objective here is to demonstrate whether models such as SARIMA, CatBoost, Prophet, convolutional and recurrent neural networks are able to bypass this requirement.
Our results suggest that the SARIMA model can serve as a computationally inexpensive yet accurate way to predict long-time dynamics.
arXiv Detail & Related papers (2022-10-25T16:50:26Z) - Knowledge-based Deep Learning for Modeling Chaotic Systems [7.075125892721573]
This paper considers extreme events and their dynamics and proposes models based on deep neural networks, called knowledge-based deep learning (KDL)
Our proposed KDL can learn the complex patterns governing chaotic systems by jointly training on real and simulated data.
We validate our model by assessing it on three real-world benchmark datasets: El Nino sea surface temperature, San Juan Dengue viral infection, and Bjornoya daily precipitation.
arXiv Detail & Related papers (2022-09-09T11:46:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.