LVMark: Robust Watermark for Latent Video Diffusion Models
- URL: http://arxiv.org/abs/2412.09122v3
- Date: Fri, 28 Mar 2025 05:23:37 GMT
- Title: LVMark: Robust Watermark for Latent Video Diffusion Models
- Authors: MinHyuk Jang, Youngdong Jang, JaeHyeok Lee, Feng Yang, Gyeongrok Oh, Jongheon Jeong, Sangpil Kim,
- Abstract summary: We introduce LVMark, a novel watermarking method for video diffusion models.<n>We propose a new watermark decoder tailored for generated videos by learning the consistency between adjacent frames.<n>We optimize both the watermark decoder and the latent decoder of diffusion model, effectively balancing the trade-off between visual quality and bit accuracy.
- Score: 13.85241328100336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid advancements in video diffusion models have enabled the creation of realistic videos, raising concerns about unauthorized use and driving the demand for techniques to protect model ownership. Existing watermarking methods, while effective for image diffusion models, do not account for temporal consistency, leading to degraded video quality and reduced robustness against video distortions. To address this issue, we introduce LVMark, a novel watermarking method for video diffusion models. We propose a new watermark decoder tailored for generated videos by learning the consistency between adjacent frames. It ensures accurate message decoding, even under malicious attacks, by combining the low-frequency components of the 3D wavelet domain with the RGB features of the video. Additionally, our approach minimizes video quality degradation by embedding watermark messages in layers with minimal impact on visual appearance using an importance-based weight modulation strategy. We optimize both the watermark decoder and the latent decoder of diffusion model, effectively balancing the trade-off between visual quality and bit accuracy. Our experiments show that our method embeds invisible watermarks into video diffusion models, ensuring robust decoding accuracy with 512-bit capacity, even under video distortions.
Related papers
- Video Signature: In-generation Watermarking for Latent Video Diffusion Models [19.648332041264474]
Video Signature (VID SIG) is an in-generation watermarking method for latent video diffusion models.<n>We achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality.<n> Experimental results show that VID SIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency.
arXiv Detail & Related papers (2025-05-31T17:43:54Z) - Safe-Sora: Safe Text-to-Video Generation via Graphical Watermarking [53.434260110195446]
Safe-Sora is the first framework to embed graphical watermarks directly into the video generation process.<n>We develop a 3D wavelet transform-enhanced Mamba architecture with a adaptive localtemporal scanning strategy.<n>Experiments demonstrate Safe-Sora achieves state-of-the-art performance in terms of video quality, watermark fidelity, and robustness.
arXiv Detail & Related papers (2025-05-19T03:31:31Z) - VIDSTAMP: A Temporally-Aware Watermark for Ownership and Integrity in Video Diffusion Models [32.0365189539138]
VIDSTAMP is a watermarking framework that embeds messages directly into the latent space of temporally-aware video diffusion models.<n>Our method imposes no additional inference cost and offers better perceptual quality than prior methods.
arXiv Detail & Related papers (2025-05-02T17:35:03Z) - VideoMark: A Distortion-Free Robust Watermarking Framework for Video Diffusion Models [18.043141353517317]
VideoMark is a training-free robust watermarking framework for video diffusion models.
Our method generates an extended watermark message sequence and randomly selects starting positions for each video.
Our watermark remains undetectable to attackers without the secret key, ensuring strong imperceptibility compared to other watermarking frameworks.
arXiv Detail & Related papers (2025-04-23T02:21:12Z) - VideoShield: Regulating Diffusion-based Video Generation Models via Watermarking [27.345134138673945]
VideoShield is a novel watermarking framework for video generation models.
Unlike post-processing methods, VideoShield embeds watermarks directly during video generation.
To ensure video integrity, we introduce a tamper localization feature.
arXiv Detail & Related papers (2025-01-24T02:57:09Z) - SuperMark: Robust and Training-free Image Watermarking via Diffusion-based Super-Resolution [27.345134138673945]
We propose SuperMark, a robust, training-free watermarking framework.
SuperMark embeds the watermark into initial Gaussian noise using existing techniques.
It then applies pre-trained Super-Resolution models to denoise the watermarked noise, producing the final watermarked image.
For extraction, the process is reversed: the watermarked image is inverted back to the initial watermarked noise via DDIM Inversion, from which the embedded watermark is extracted.
Experiments demonstrate that SuperMark achieves fidelity comparable to existing methods while significantly improving robustness.
arXiv Detail & Related papers (2024-12-13T11:20:59Z) - Video Seal: Open and Efficient Video Watermarking [47.40833588157406]
Video watermarking addresses challenges by embedding imperceptible signals into videos, allowing for identification.<n>Video Seal is a comprehensive framework for neural video watermarking and a competitive open-sourced model.<n>We present experimental results demonstrating the effectiveness of the approach in terms of speed, imperceptibility, and robustness.
arXiv Detail & Related papers (2024-12-12T17:41:49Z) - SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models [77.80595722480074]
SleeperMark is a novel framework designed to embed resilient watermarks into T2I diffusion models.<n>It guides the model to disentangle the watermark information from the semantic concepts it learns, allowing the model to retain the embedded watermark.<n>Our experiments demonstrate the effectiveness of SleeperMark across various types of diffusion models.
arXiv Detail & Related papers (2024-12-06T08:44:18Z) - Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images.<n>Recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations.<n>We propose RATTAN, that leverages the diffusion process to conduct controlled image generation on the protected input.
arXiv Detail & Related papers (2024-11-22T22:28:19Z) - Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation [134.22372190926362]
Image diffusion distillation achieves high-fidelity generation with very few sampling steps.
Applying these techniques directly to video diffusion often results in unsatisfactory frame quality due to limited visual quality in public video datasets.
Our study aims to improve video diffusion distillation while improving frame appearance using abundant high-quality image data.
arXiv Detail & Related papers (2024-06-11T02:09:46Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARK is a first-of-its-kind watermarking technique that enhances robustness through contrastive learning.
Our evaluation reveals that JIGMARK significantly surpasses existing watermarking solutions in resilience to diffusion-model edits.
arXiv Detail & Related papers (2024-06-06T03:31:41Z) - AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
Diffusion models have achieved remarkable success in generating high-quality images.
Recent works aim to let SD models output watermarked content for post-hoc forensics.
We propose textttmethod as the first implementation under this scenario.
arXiv Detail & Related papers (2024-05-18T01:25:47Z) - DiffuseTrace: A Transparent and Flexible Watermarking Scheme for Latent Diffusion Model [15.982765272033058]
Latent Diffusion Models (LDMs) enable a wide range of applications but raise ethical concerns regarding illegal utilization.
New technique called DiffuseTrace embeds invisible watermarks in all generated images for future detection semantically.
arXiv Detail & Related papers (2024-05-04T15:32:57Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
Large language models (LLMs) demonstrate general intelligence across a variety of machine learning tasks.
adversaries can still utilize model extraction attacks to steal the model intelligence encoded in model generation.
Watermarking technology offers a promising solution for defending against such attacks by embedding unique identifiers into the model-generated content.
arXiv Detail & Related papers (2024-05-03T06:41:48Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.